Y-SHAPED FLUOROPHORES BASED ON N(2)-ARYL-1,2,3-TRIAZOLES: SYNTHESIS, THEORETICAL CALCULATIONS, OPTICAL PROPERTIES, AND APPLICATION OPPORTUNITIES FOR DETECTION OF NITROAROMATICS
- 作者: Lavrinchenko I.A.1, Moseev T.D.1, Varaksin M.V.1,2, Seleznev Y.A.1, Sadieva L.K.1, Zyryanov G.V.1,2, Tsmokaluk A.N.1, Charushin V.N.1,2, Chupakhin O.N.1,2
- 
							隶属关系: 
							- Ural Federal University
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
 
- 期: 卷 512, 编号 1 (2023)
- 页面: 21-31
- 栏目: CHEMISTRY
- URL: https://rjeid.com/2686-9535/article/view/651947
- DOI: https://doi.org/10.31857/S2686953522600702
- EDN: https://elibrary.ru/CLZCVS
- ID: 651947
如何引用文章
详细
A five-stage method for the synthesis of Y-shaped push-pull fluorophores based on 2-(4′-methoxyphenyl)-1,2,3-triazole has been described. These molecules proved to possess emission in the range from 350 to 450 nm and high quantum yields QY 90–99% in solvents of various polarity. An opportunity of using the obtained compounds as chemosensors for both aromatic and aliphatic nitroanalytes at concentrations from 300 ppb has been elucidated.
作者简介
I. Lavrinchenko
Ural Federal University
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg						
T. Moseev
Ural Federal University
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg						
M. Varaksin
Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: m.v.varaksin@urfu.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg; Russian Federation, 620990, Yekaterinburg						
Y. Seleznev
Ural Federal University
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg						
L. Sadieva
Ural Federal University
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg						
G. Zyryanov
Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg; Russian Federation, 620990, Yekaterinburg						
A. Tsmokaluk
Ural Federal University
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg						
V. Charushin
Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
														Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg; Russian Federation, 620990, Yekaterinburg						
O. Chupakhin
Ural Federal University; Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: chupakhin@ios.uran.ru
				                					                																			                												                								Russian Federation, 620002, Yekaterinburg; Russian Federation, 620990, Yekaterinburg						
参考
- Bureš F. // RSC Adv. 2014. V. 4. № 102. P. 58826–58851. https://doi.org/10.1039/C4RA11264D
- Li K., Ren T.-B., Huan S., Yuan L., Zhang X.-B. // J. Am. Chem. Soc. 2021. V. 143. № 50. P. 21143–21160. https://doi.org/10.1021/jacs.1c10925
- Pucher N., Rosspeintner A., Satzinger V., Schmidt V., Gescheidt G., Stampfl J., Liska R. // Macromolecules. 2009. V. 42. № 17. P. 6519–6528. https://doi.org/10.1021/ma9007785
- Grabowski Z.R., Rotkiewicz K., Rettig W. // Chem. Rev. 2003. V. 103. № 10. P. 3899–4032. https://doi.org/10.1021/cr940745l
- Escudero D. // Acc. Chem. Res. 2016. V. 49. № 9. P. 1816–1824. https://doi.org/10.1021/acs.accounts.6b00299
- Sekar R.B., Periasamy A. // J. Cell Biol. 2003. V. 160. № 5. P. 629–633. https://doi.org/10.1083/jcb.200210140
- Shen Q., Wang S., Yang N.-D., Zhang C., Wu Q., Yu C. // J. Lumin. 2020. V. 225. P. 117338. https://doi.org/10.1016/j.jlumin.2020.117338
- Zheng Q., Juette M.F., Jockusch S., Wasserman M.R., Zhou Z., Altman R.B., Blanchard S.C. // Chem. Soc. Rev. 2014. V. 43. № 4. P. 1044–1056. https://doi.org/10.1039/C3CS60237K
- Martynov V.I., Pakhomov A.A. // Russ. Chem. Rev. 2021. V. 90. № 10. P. 1213–1262. https://doi.org/10.1070/RCR4985
- Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. https://doi.org/10.1002/9783527801916
- Long Y., Chen H., Wang H., Peng Z., Yang Y., Zhang G., Li N., Liu F., Pei J. // Anal. Chim. Acta. 2012. V. 744. P. 82–91. https://doi.org/10.1016/j.aca.2012.07.028
- Mauricio F.G.M., Silva J.Y.R., Talhavini M., Júnior S.A., Weber I.T. // Microchem. J. 2019. V. 150. P. 104037. https://doi.org/10.1016/j.microc.2019.104037
- Tretyakov E.V., Ovcharenko V.I., Terent’ev A.O., Krylov I.B., Magdesieva T.V., Mazhukin D.G., Gritsan N.P. // Russ. Chem. Rev. 2022. V. 91. № 2. RCR5025. https://doi.org/10.1070/RCR5025
- Fu H.-Y., Liu X.-J., Xia M. // RSC Adv. 2017. V. 7. № 80. P. 50720–50728. https://doi.org/10.1039/C7RA10432D
- Miura Y., Kobayashi K., Yoshioka N. // New J. Chem. 2021. V. 45. № 2. P. 898–905. https://doi.org/10.1039/D0NJ05323F
- Du F., Li D., Ge S., Xie S., Tang M., Xu Z., Wang E., Wang S., Tang B.Z. // Dye. Pigment. 2021. V. 194. P. 109640. https://doi.org/10.1016/j.dyepig.2021.109640
- Fu H.-Y., Xu N., Pan Y.-M., Lu X.-L., Xia M. // Phys. Chem. Chem. Phys. 2017. V. 19. № 18. P. 11563–11570. https://doi.org/10.1039/C7CP01281K
- Khamrang T., Kathiravan A., Ponraj C., Saravanan D. // J. Mol. Struct. 2021. V. 1238. P. 130442. https://doi.org/10.1016/j.molstruc.2021.130442
- Chen S.-H., Jiang K., Lin J.-Y., Yang K., Cao X.-Y., Luo X.-Y., Wang Z.‑Y. // J. Mater. Chem. C. 2020. V. 8. № 24. P. 8257–8267. https://doi.org/10.1039/D0TC01870H
- Lai Q., Liu Q., Zhao K., Shan C., Wojtas L., Zheng Q., Shi X., Song Z. // Chem. Commun. 2019. V. 55. № 32. P. 4603–4606. https://doi.org/10.1039/C9CC00262F
- Govdi A., Tokareva V., Rumyantsev A.M., Panov M.S., Stellmacher J., Alexiev U., Danilkina N.A., Balova I.A. // Molecules. 2022. V. 27. № 10. P. 3191. https://doi.org/10.3390/molecules27103191
- Wong M.Y., Leung L.M. // Dyes Pigm. 2017. V. 145. P. 542–549. https://doi.org/10.1016/j.dyepig.2017.06.054
- Ahmadi F., Tisseh Z.N., Dabiri M., Bazgir A. // C. R. Chim. 2013. V. 16. № 12. P. 1086–1090. https://doi.org/10.1016/j.crci.2013.05.006
- Chen Z., Yan Q., Yi H., Liu Z., Lei A., Zhang Y. // Chem. Eur. J. 2014. V. 20. № 42. P. 13692–13697. https://doi.org/10.1002/chem.201403515
- Begtrup M., Holm J. // J. Chem. Soc. Perkin Trans. 1. 1981. P. 503–513. https://doi.org/10.1039/p19810000503
- Beletskaya I.P., Alonso F., Tyurin V. // Coord. Chem. Rev. 2019. V. 385 P. 137–173. https://doi.org/10.1016/j.ccr.2019.01.012
- Chen C., Lu X., Holland M. C., Lv S., Ji X., Liu W., Liu J., Depre D., Westerduin P. // Eur. J. Org. Chem. 2020. V. 2020. № 5. P. 548–551. https://doi.org/10.1002/ejoc.201901519
- Gaussian 16, Revision C.01. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheese-man J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B. Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V.7. P. 3297–3305.
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057–1065. https://doi.org/10.1039/B515623H
- Grimme S., Ehrlich S., Goerigk L. // Theor. J. Comput. Chem. 2011. V. 32. P. 1456–1465. https://doi.org/10.1002/jcc.21759
- Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. P. 154104. https://doi.org/10.1063/1.3382344
- libint2 library // Доступно по ссылке: http://libint.valeyev.net/ (ссылка активна на 09.01.2023)
- Libxc library // Доступно по ссылке: https://tddft.org/programs/libxc/ (ссылка активна на 09.01.2023).
- Lakowicz J.R. Principles of Fluorescence Spectroscopy, Third Edition. Springer New York, 2017. https://doi.org/10.1007/978-0-387-46312-4
- Campbell K., Zappas A., Bunz U., Thio Y.S., Buck-nall D.G. // J. Photochem. Photobiol. A Chem. 2012. V. 249. P. 41–46. https://doi.org/10.1016/j.jphotochem.2012.08.015
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					







