Современные тенденции в синтезе неорганических и элементоорганических фосфор- и серосодержащих полимеров. Обзор
- Авторы: Тарасова Н.П.1, Кривобородов Е.Г.1, Межуев Я.О.1,2
- 
							Учреждения: 
							- Российский химико-технологический университет имени Д.И. Менделеева
- Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук
 
- Выпуск: Том 512, № 1 (2023)
- Страницы: 5-20
- Раздел: ХИМИЯ
- URL: https://rjeid.com/2686-9535/article/view/651946
- DOI: https://doi.org/10.31857/S2686953523600022
- EDN: https://elibrary.ru/CHGMYK
- ID: 651946
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Проведен анализ данных литературы о совокупности реакций получения макромолекул с высоким содержанием фосфора и серы, а также рассмотрены основные подходы, позволяющие внедрять эти элементы в состав полимеров и полимерных материалов с учетом фундаментальных принципов зеленой химии. Рассмотрены методы получения функциональных полимеров в мягких условиях с минимальными затратами энергии, необходимой для проведения синтеза, из внешних источников, которые могут стать новыми точками роста “зеленых” промышленных технологий. Особое внимание уделено рассмотрению вопросов синтеза полифосфазенов и полифосфоэфиров биомедицинского назначения, а также проведению реакции обратной вулканизации с образованием полимеров, находящих применение в сорбционной очистке сточных вод, создании источников тока и ИК-оптики.
Об авторах
Н. П. Тарасова
Российский химико-технологический университет имени Д.И. Менделеева
														Email: vv1992@yandex.ru
				                					                																			                												                								Россия, 125047, Москва						
Е. Г. Кривобородов
Российский химико-технологический университет имени Д.И. Менделеева
							Автор, ответственный за переписку.
							Email: vv1992@yandex.ru
				                					                																			                												                								Россия, 125047, Москва						
Я. О. Межуев
Российский химико-технологический университет имени Д.И. Менделеева; Институт элементоорганических соединенийим. А.Н. Несмеянова Российской академии наук
														Email: vv1992@yandex.ru
				                					                																			                												                								Россия, 125047, Москва; Россия, 119334, Москва						
Список литературы
- Rockström J., Steffen W., Noone K., Persson A., Stuart Chapin F., Lambin E., Lenton T., Scheffer M., Folke C., Schellnhuber H., Nykvist B., de Wit C., Hughes T., Van der Leeuw S., Rodhe H., Sörlin S., Snyder P., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R., Fabry V., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. // Nature. 2009. V. 461. P. 472–475. https://doi.org/10.1038/461472a
- Metson G., Brownlie W., Spears B. // npj Urban Sustain. 2022. V. 2. № 1. P. 30. https://doi.org/10.1038/s42949-022-00076-8
- Karunarathna M., Lauer M., Thiounn T., Smith R., Tennyson A. // J. Mater. Chem. A. 2019. V. 7. P. 15683–15690. https://doi.org/10.1039/C9TA03222C
- Tarasova N.P., Zanin A.A., Krivoborodov E.G., Mezhu-ev Ya.O. // RSC Adv. 2021. V. 11. P. 9008–9020. https://doi.org/10.1039/D0RA10507D
- Газпром переработка // Доступно по: https://pererabotka.gazprom.ru/press/news/2019/10/889/. Ссылка активна на 23.08.2023 г.
- Xiao P., Chen W., Wang X. // Adv. Energy Mater. 2015. V. 5. P. 1500985. https://doi.org/10.1002/aenm.201500985
- Chen L., Wang Y.-Z. // Polym. Adv. Technol. 2010. V. 21. P. 1–26. https://doi.org/10.1002/pat.1550
- Ansari S.A., Khan Z., Ansari M.O., Cho M. // RSC Adv. 2016. V. 6. P. 44616–44629. https://doi.org/10.1039/C6RA06145A
- Cisse L., Mrabet T. // Phosphorus Res. Bull. 2004. V. 15. P. 21–25. https://doi.org/10.3363/prb1992.15.0_21
- Tarasova N.P., Smetannikov Yu.V. // Dokl. Chem. 2011. V. 437. № 1. P. 53–56. https://doi.org/10.1134/S0012500811030049
- Sukhov B., Malysheva S., Vakul’skaya T., Tirsky V., Martynovich E., Smetannikov Y., Tarasova N. // Arkivoc. 2003. V. 13. P. 196–204. https://www.arkat-usa.org/get-file/19755
- Тарасова Н.П., Сметанников Ю.В., Артемкина И.М., Лавров И.А., Синайский М.А., Ермаков В.И. // ДАН. 2006. V. 410. № 5. P. 640.
- Tarasova N.P., Smetannikov Yu.V., Artemkina I.M., Vilesov A.S. // Phosphorus, Sulfur Silicon Relat. Elem. 2008. V. 183. № 2–3. P. 586–593. https://doi.org/10.1080/10426500701765004
- Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Za-nin A.A. // Pure Appl. Chem. 2009. V. 81. № 11. P. 2115–2122. https://doi.org/10.1351/PAC-CON-08-10-14
- Tarasova N.P., Zanin A.A., Smetannikov Yu.V., Vile-sov A.S. // C. R. Chim. 2010. V. 13. № 8–9. P. 1028–1034. https://doi.org/10.1016/j.crci.2010.05.013
- Tarasova N.P., Smetannikov Yu.V., Zanin A.A. // Dokl. Chem. 2013. V. 449. P. 111–113. https://doi.org/10.1134/S0012500813040010
- Tarasova N.P., Zanin A.A. // Pure Appl. Chem. 2019. V. 91. № 4. P. 671–686. https://doi.org/10.1515/pac-2018-0716
- Teptereva G.A., Pakhomov S.I., Chetvertneva I.A., Karimov E.H., Egorov M.P., Movsumzade E.M., Evstigne-ev E.I., Vasiliev A.V., Sevastyanova M.V., Voloshin A.I., Nifantyev N.E., Nosov V.V., Dokichev V.A., Baba-ev E.R., Rogovina S.Z., Berlin A.A., Fakhreeva A.V., Baulin O.A., Kolchina G.Y., Voronov M.S., Starove-rov D.V., Kozlovsky R.A., Tarasova N.P., Zanin A.A., Krivoborodov E.G., Karimov O.K., Flid V.R., Logino-va M.E., Kozlovsky I.A. // ChemChemTech. 2021. V. 64. P. 4–121. https://doi.org/10.6060/ivkkt.20216409.6465
- Tarannum A., Muvva C., Mehta A., Rao J.R., Fathi-ma N.N. // RSC Adv. 2016. V. 6. P. 4022–4033. https://doi.org/10.1039/C5RA22441A
- Steinrück H.-P., Wasserscheid P. // Catal. Lett. 2015. V. 145. P. 380–397. https://doi.org/10.1007/s10562-014-1435-x
- Welton T. // Coord. Chem. Rev. 2004. V. 248. № 21–24. P. 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015
- Gaur A., Avula N., Balasubramanian S. // J. Phys. Chem. B. 2020. V. 124. № 40. P. 8844−8856. https://doi.org/10.1021/acs.jpcb.0c04939
- Tarasova N.P., Zanin A.A., Krivoborodov E.G. // Dokl. Phys. Chem. 2022. V. 503. P. 39–44. https://doi.org/10.1134/S0012501622040017
- Jagadeeswara Rao Ch., Venkatesan K.A., Tata B.V.R., Nagarajan K., Srinivasan T.G., Vasudeva Rao P.R. // Radiat. Phys. Chem. 2011. V. 80. № 5. P. 643–649. https://doi.org/10.1016/j.radphyschem.2011.01.012
- Tarábek P., Liu S., Haygarth K., Bartels D.M. // Radiat. Phys. Chem. 2009. V. 78. 168–172. https://doi.org/10.1016/j.radphyschem.2008.11.006
- Yuan L., Peng J., Xu L., Zhai M., Li J., Wei G. // Radiat. Phys. Chem. 2009. V. 78. P. 1133–1136. https://doi.org/10.1016/j.radphyschem.2009.07.003
- Dhiman S.B., Goff G.S., Runde W., LaVerne J.A. // J. Nucl. Mater. 2014. V. 453. № 1–3. P. 182–187. https://doi.org/10.1016/j.jnucmat.2014.06.056
- Shkrob I.A., Marin T., Cheremisinov S.D., Wishart J. // J. Phys. Chem. B. 2011 V. 115. № 37. P. 10927–10942. https://doi.org/10.1021/jp206579j
- Shkrob I.A., Marin T.W., Cheremisinov S.D., Wishart J. // J. Phys. Chem. B. 2011. V. 115. № 14. P. 3872–3888. https://doi.org/10.1021/jp2003062
- Ao Y., Yuan W., Yu T., Peng J., Li J., Zhai M., Zhao L. // Phys. Chem. Chem. Phys. 2015. V. 17 № 5. P. 3457–3462. https://doi.org/10.1039/c4cp04294h
- Guleria A., Singh A.K., Adhikari S., Sarkar S.K. // Dalton Trans. 2014. V. 49. P. 609–625. https://doi.org/10.1039/C3DT51265G
- Mincher B.J., Wishart J.F. // Solvent Extr. Ion Exch. 2014. V. 32. № 6. P. 563–583. https://doi.org/10.1080/07366299.2014.925687
- Ao Y., Peng J., Yuan L., Cui Z., Li C., Li J., Zhai M. // Dalton Trans. 2013. V. 42. № 12. P. 4299–4305. https://doi.org/10.1039/C2DT32418K
- Le Rouzo G., Lamouroux C., Dauvois V., Dannoux A., Legand S., Durand D., Moisy P., Moutiers G. // Dalton Trans. 2009. V. 38. № 31. P. 6175–6184. https://doi.org/10.1039/B903005K
- Tarasova N.P., Smetannikov Y.V., Polyiansky D.E. Synthesis of Polymeric Forms of Phosphorus. In: Green Industrial Applications of Ionic Liquids. Rogers R.D., Seddon K.R., Volkov S. (Eds.). Kluwer Academic Publishers, Boston, 2003. https://doi.org/10.1007/978-94-010-0127-4_32
- Trofimov B.A., Malysheva S.F., Gusarova N.K., Belogorlova N.A., Kuimov V.A., Sukhov B.G., Tarasova N.P., Smetannikov Y.V., Vilesov A.S., Sinegovskaya L.M., Arsent’ev K.Y., Likhoshvai E.V. // Dokl. Chem. 2009. V. 427. P. 153–155. https://doi.org/10.1134/S0012500809070027
- Yakhvarov D.G., Gorbachuk E.V., Kagirov R.M., Sinyashin O.G. // Russ. Chem. Bull. 2012. V. 61. P. 1300–1312. https://doi.org/10.1007/s11172-012-0176-5
- Hart M., White E., Chen J., McGilvery C., Pickard C., Michaelides A., Sella A., Shaffer M., Salzmann C. // Angew. Chem. Int. Ed. 2017. V. 56. P. 8144–8148. https://doi.org/10.1002/anie.201703585
- Tarasova N., Zanin A., Sobolev P., Ivanov A. // Phosphorus, Sulfur Silicon Relat. Elem. 2022. V. 197. № 5–6. P. 608–609. https://doi.org/10.1080/10426507.2021.2011885
- Deng M., Kumbar S.G., Wan Y., Toti U.S., Allcock H.R., Laurencin C.T. // Soft Matter. 2010. V. 6. № 14. P. 3119–3132. https://doi.org/10.1039/B926402G
- Andrianov A., Langer R. // J. Controlled Release. 2021. V. 329. P. 299–315. https://doi.org/10.1016/j.jconrel.2020.12.001
- Chernysheva A.I., Esin A.S., Soldatov M.A., Bredov N.S., Kireev V.V., Oberemok V.V., Sirotin I.S., Gorlov M.V. // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1117. P. 012027. https://doi.org/10.1088/1757-899X/1117/1/012027
- Allcock H.R. // Soft Matter. 2012. V. 8. № 29. P. 7521–7532. https://doi.org/10.1039/C2SM26011E
- Chen F., Teniola O.R., Ogueri K.S., Laurencin C.T. // Regen. Eng. Transl. Med. 2022. https://doi.org/10.1007/s40883-022-00278-7
- Strasser P., Teasdale I. // Molecules. 2020. V. 25. P. 1716. https://doi.org/10.3390/molecules25071716
- Rothemund S., Teasdale I. // Chem. Soc. Rev. 2016. V. 45. P. 5200–5215. https://doi.org/10.1039/C6CS00340K
- Ngo D.C., Rutt J.S., Allcock H.R. // J. Am. Chem. Soc. 1991. V. 113. № 13. P. 5075–5076. https://doi.org/10.1021/ja00013a061
- Allcock H.R., Gardner J.E., Smeltz K.M. // Macromo-lecules. 1975. V. 8. № 1. P. 36–42. https://doi.org/10.1021/ma60043a008
- Carriedo G., Garcia Alonso F.J., Gomez-Elipe P., Ignacio Fidalgo J., Garcia Alvarez J., Presa-Soto A. // Chem. Eur. J. 2003. V. 9. № 16. P. 3833–3836. https://doi.org/10.1002/chem.200304750
- Gleria M., Jaeger R. Polyphosphazenes: A Review. In: New Aspects in Phosphorus Chemistry V. Topics in Current Chemistry. Majoral J.P. (Ed.). V. 250. Springer Berlin, Heidelberg, 2005. P. 165–251. https://doi.org/10.1007/b100985
- Allen C.W., Hneihen A.S. // Phosphorus, Sulfur Silicon Relat. Elem. 1999. V. 144. № 1. P. 213–216. https://doi.org/10.1080/10426509908546220
- Wang B. // Macromolecules. 2005. V. 38. № 2. P. 643–645. https://doi.org/10.1021/ma0489772
- Suárez Suárez S., Presa Soto D., Carriedo G., Presa Soto A., Staubitz A. // Organometallics. 2012. V. 31. № 7. P. 2571–2581. https://doi.org/10.1021/om201012g
- Andrianov A.K., Chen J., LeGolvan M.P. // Macromo-lecules. 2004. V. 37. № 2. P. 414–420. https://doi.org/10.1021/ma0355655
- Wisian-Neilson P., Neilson R.H. Synthesis and Modification of Poly(alkyl/arylphosphazenes). In: Polyphosphazenes in Biomedicine, Engineering, and Pioneering Synthesis. Andrianov A.K., Allcock S.H. (Eds.). V. 1298. American Chemical Society: Washington, DC, USA, 2018. P. 167–181. https://doi.org/10.1021/bk-2018-1298.ch008
- Chistyakov E.M., Tupikov A.S., Buzin M.I., Borisov R.S., Kireev V.V. // Mater. Chem. Phys. 2019. V. 223. P. 353–359. https://doi.org/10.1016/j.matchemphys.2018.11.008
- Chistyakov E.M., Filatov S.N., Kireev V.V., Prudskov B.M., Chetverikova A.I., Chuev V.P., Borisov R.S. // Polym. Sci. Ser. B. 2013. V. 55. P. 355–359. https://doi.org/10.1134/S156009041306002X
- Chistyakov E.M., Panfilova D.V., Kireev V.V., Volkov V.V., Bobrov M.F. // J. Mol. Struct. 2017. V. 1148. P. 1–6. https://doi.org/10.1016/j.molstruc.2017.07.005
- Terekhov I.V., Filatov S.N., Chistyakov E.M., Borisov R.S., Kireev V.V. // Russ. J. Appl. Chem. 2013. V. 86. P. 1600–1604. https://doi.org/10.1134/S1070427213100200
- Bobrov M.F., Buzin M.I., Primakov P.V., Chistyakov E.M. // J. Mol. Struct. 2020. V. 1208. P. 127896. https://doi.org/10.1016/j.molstruc.2020.127896
- Chistyakov E., Yudaev P., Nelyubina Y. // Nanomaterials. 2022. V. 12. № 13. P. 2268. https://doi.org/10.3390/nano12132268
- Xu H., Zhang X., Liu D., Yan C., Chen X., Hui D., Zhu Y. // Compos. B. Eng. 2016. V. 93. P. 244–251. https://doi.org/10.1016/j.compositesb.2016.03.033
- Strakhov I.S., Rodnaya A.I., Mezhuev Ya.O., Korshak Yu.V., Vagramyan T.A. // Russ. J. Appl. Chem. 2014. V. 87. № 12. P. 1918–1922. https://doi.org/10.1134/S1070427214120209
- Tian H., Tang Z., Zhuang X., Chen X., Jing X. // Prog. Polym. Sci. 2012. V. 37. № 2. P. 237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004
- Yilmaz Z.E., Jérôme C. // Macromol. Biosci. 2016. V. 16. P. 1745–1761. https://doi.org/10.1002/mabi.201600269
- Zhang F., Zhang S., Pollack S.F., Li R., Gonzalez A.M., Fan J., Zou J., Leininger S.E., Pavia-Sanders A., Johnson R., Nelson L.D., Raymond J.E., Elsabahy M., Hughes D.M.P., Lenox M.W., Gustafson T.P., Wo-oley K.L. // J. Am. Chem. Soc. 2015. V. 137. № 5. P. 2056–2066. https://doi.org/10.1021/ja512616s
- Percec S., Natansohn A., Dima M. // Angew. Makromol. Chem. 1979. V. 80. № 1. P. 143–148. https://doi.org/10.1002/apmc.1979.050800111
- Pelosi C., Tinè M.R., Wurm F.R. // Eur. Polym. J. 2020. V. 141. P. 110079. https://doi.org/10.1016/j.eurpolymj.2020.110079
- Iwasaki Y., Yamaguchi E. // Macromolecules. 2010. V. 43. №. 6. P. 2664–2666. https://doi.org/10.1021/ma100242s
- Yolsal U., Horton T.A.R., Wang M., Shaver M.P. // Prog. Polym. Sci. 2020. V. 111. P. 101313. https://doi.org/10.1016/j.progpolymsci.2020.101313
- Henke H., Brüggemann O., Teasdale I. // Macromol. Rapid Commun. 2017. V. 38. P. 1600644. https://doi.org/10.1002/marc.201600644
- Becker G., Wurm F.R. // Chem. Soc. Rev. 2018. V. 47. № 20. P. 7739–7782. https://doi.org/10.1039/C8CS00531A
- Nifant’ev I.E., Ivchenko P.V. // Int. J. Mol. Sci. 2022. V. 23. P. 14857. https://doi.org/10.3390/ijms232314857
- Dirauf M., Muljajew I., Weber C., Schubert U.S. // Prog. Polym. Sci. 2022. V. 129. P. 101547. https://doi.org/10.1016/j.progpolymsci.2022.101547
- Rheinberger T., Ankone M., Grijpma D., Wurm F.R. // Eur. Polym. J. 2022. V. 180. P. 111607. https://doi.org/10.1016/j.eurpolymj.2022.111607
- Clément B., Grignard B., Koole L., Jérôme C., Lecomte P. // Macromolecules. 2012. V. 45. № 11. P. 4476–4486. https://doi.org/10.1021/ma3004339
- Zhang S., Li A., Zou Z.J., Lin L.Y., Wooley K.L. // ACS Macro Letters. 2012. V. 1. № 2. P. 328–333. https://doi.org/10.1021/mz200226m
- Huang X., Huang X.J., Yu A.D., Wang C., Dai Z.W., Xu Z.K. // Macromol. Chem. Phys. 2011. V. 212. P. 272–277. https://doi.org/10.1002/macp.201000439
- Chen C., Xu H., Qian Y.C., Huang X.J. // RSC Adv. 2015. V. 5. № 21. P. 15909–15915. https://doi.org/10.1039/C4RA14012E
- Strzelecka K., Piotrowska U., Sobczak M., Oledzka E. // Int. J. Mol. Sci. 2023. V. 24. P. 1053. https://doi.org/10.3390/ijms24021053
- Balzade Z., Sharif F., Ghaffarian Anbaran S.R. // Macromolecules. 2022. V. 55. № 16. P. 6938−6972. https://doi.org/10.1021/acs.macromol.2c00594
- Du X., Sun Y., Zhang M., He J., Ni P. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 16. P. 13939–13949. https://doi.org/10.1021/acsami.7b02281
- Vanslambrouck S., Riva R., Ucakar B., Préat V., Gagliardi M., Molin D.G.M., Lecomte P., Jérôme C. // Molecules. 2021. V. 26. P. 1750. https://doi.org/10.3390/molecules26061750
- Xiong C., Cao S., Wang Y., Wang X., Long S., Zhang G., Yang J. // J. Coat. Technol. Res. 2019. V. 16. P. 643–650. https://doi.org/10.1007/s11998-018-00172-4
- Cetina-Mancilla E., Reyes-García G., Rodríguez-Molina M, Zolotukhin M.G., Vivaldo-Lima E., González-Díaz M.O., Ramos-Ortiz G. // Eur. Polym. J. 2023. V. 184. P. 111800. https://doi.org/10.1016/j.eurpolymj.2022.111800
- Firdaus M., Montero de Espinosa L., Meier M.A.R. // Macromolecules. 2011. V. 44. № 18. P. 7253–7262. https://doi.org/10.1021/ma201544e
- Guo Y., Li Q., Lv L., Zhou P., Wang J., Wu Z., Wang G. // Polymer. 2020. V. 186. P. 122049. https://doi.org/10.1016/j.polymer.2019.122049
- Watanabe S., Oyaizu K. // ACS Appl. Polym. Mater. 2021. V. 3. № 9. P. 4495–4503. https://doi.org/10.1021/acsapm.1c00536
- Besse J., Chasen S., Claborn T., Collins A., Darpel A., Fatta A., Ghanim R., Kanaan G., Lukyanchuk A., Nelson T., Ray J., Smith A., Spagnola J., Veazey S., Womack L., Wells M., Panth N., Parkin S., Watson M. // J. Polym. Sci. 2022. V. 60. № 12. P. 1918–1923. https://doi.org/10.1002/pol.20220115
- Zhang T., Fu X., Leng H., Liu S., Long S., Yang J., Zhang G., Wang X., Yang J. // Langmuir. 2022. V. 38. № 36. P. 10975–10985. https://doi.org/10.1021/acs.langmuir.2c01381
- Abbasi A., Nasef M.M., Yahya W.Z.N. // Green Mater. 2020. V. 8. № 4. P. 172–180. https://doi.org/10.1680/jgrma.19.00053
- Ghumman A.S.M., Shamsuddin R., Nasef M.M., Krivo-borodov E.G., Ahmad S., Zanin A.A., Mezhuev Ya.O., Abbasi A. // Polymers. 2021. V. 13. P. 4040. https://doi.org/10.3390/polym13224040
- Boyd D.A. // Angew. Chem. Int. Ed. 2016. V. 55. № 50. P. 15486–15502. https://doi.org/10.1002/anie.201604615
- Griebel J.J., Glass R.S., Char K., Pyun J. // Progr. Polym. Sci. 2016. V. 58. P. 90–125. https://doi.org/10.1016/j.progpolymsci.2016.04.003
- Vidal F., Jäkle F. // Angew. Chem. Int. Ed. 2019. V. 58. № 18. P. 5846–5870. https://doi.org/10.1002/anie.201810611
- Nguyen T. // Adv. Synth. Catal. 2017. V. 359. № 7. P. 1066–1130. https://doi.org/10.1002/adsc.201601329
- Zhang Y., Glass R.S., Char K., Pyun J. // Polym. Chem. 2019. V. 10. № 30. P. 4078–4105. https://doi.org/10.1039/C9PY00636B
- Kang K.S., Iyer K.A., Pyun J. // Chem. Eur. J. 2022. V. 28. № 35. e202200115. https://doi.org/10.1002/chem.202200115
- Smith J.A., Wu X., Berry N.G., Hasell T. // J. Polym. Sci. Part A: Polym. Chem. 2018. V. 56. P. 1777–1781. https://doi.org/10.1002/pola.29067
- Diez S., Hoefling A., Theato P., Pauer W. // Polymers. 2017. V. 9. P. 59. https://doi.org/10.3390/polym9020059
- Wu X., Smith J.A., Petcher S., Zhang B., Parker D.J., Griffin J.M., Hasell T. // Nat. Commun. 2019. V. 10. P. 647. https://doi.org/10.1038/s41467-019-08430-8
- Chalker J.M., Mann M., Worthington M.J.H., Esdai-le L.J. // Org. Mater. 2021. V. 3. № 2. P. 362–373. https://doi.org/10.1055/a-1502-2611
- Parker D.J., Jones H.A., Petcher S., Cervini L., Griffin J.M., Akhtar R., Hasell T. // Mater. Chem. A. 2017. V. 5. № 23. P. 11682–11692. https://doi.org/10.1039/C6TA09862B
- Thielke M.W., Bultema L.A., Brauer D.D., Richter B., Fischer M., Theato P. // Polymers. 2016. V. 8. № 7. P. 266. https://doi.org/10.3390/polym8070266
- Lee J., Lee S., Kim J., Hanif Z., Han S., Hong S., Yoon M. // Bull. Korean Chem. Soc. 2018. V. 39. № 1. P. 84–89. https://doi.org/10.1002/bkcs.11350
- Limjuco L.A., Nisola G.M., Parohinog K.J., Valdehue-sa K.N.G., Lee S., Kim H., Chung W. // Chem. Eng. J. 2019. V. 378. P. 122216. https://doi.org/10.1016/j.cej.2019.122216
- Griebel J., Nguyen N., Namnabat S., Anderson L., Glass R., Norwood R., Mackay M., Char K., Pyun J. // ACS Macro Lett. 2015. V. 4. № 9. P. 862–866. https://doi.org/10.1021/acsmacrolett.5b00502
- Kuwabara J., Oi K., Watanabe M.M., Fukuda T., Kanbara T. // ACS Appl. Polym. Mater. 2020. V. 2. № 11. P. 5173–5178. https://doi.org/10.1021/acsapm.0c00924
- Boyd D., Nguyen V., McClain C., Kung F., Baker C., Myers J., Hunt M., Kim W., Sanghera J. // ACS Macro Letters. 2019. V. 8. № 2. P. 113–116. https://doi.org/10.1021/acsmacrolett.8b00923
- Kleine T.S., Glass R.S., Lichtenberger D.L., Mackay M.E., Char K., Norwood R.A., Pyun J. // ACS Macro Letters. 2020. V. 9. № 2. P. 245–259. https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.9b00948
- Cherumukkil S., Agrawal S., Jasra R.V. // ChemistrySelect. 2023. V. 8. № 10. e202204428. https://doi.org/10.1002/slct.202204428
- Griebel J.J., Namnabat S., Kim E.T., Himmelhuber R., Moronta D.H., Chung W.J., Simmonds A.G., Kim K., Van der Laan J., Nguyen N.A., Dereniak E.L., Ma-ckay M.E., Char K., Glass R.S., Norwood R.A., Pyun J. // Adv. Mater. 2014. V. 26. № 19. P. 3014–3018. https://doi.org/10.1002/adma.201305607
- Kleine T.S., Nguyen N.A., Anderson L.E., Namnabat S., LaVilla E.A., Showghi S.A., Dirlam P.T., Arrington C.B., Manchester M.S., Schwiegerling J., Glass R.S., Char K., Norwood R.A., Mackay M.E., Pyun J. // ACS Macro Letters. 2016. V. 5. P. 1152–1156. https://doi.org/10.1021/acsmacrolett.6b00602
- Gomez I., Mantione D., Leonet O., Blazquez J.A., Mecerreyes D. // ChemElectroChem. 2018. V. 5. № 2. P. 260–265. https://doi.org/10.1002/celc.201700882
- Dong P., Han K.S., Lee J.I., Zhang X., Cha Y., Song M.K. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 35. P. 29565–29573. https://doi.org/10.1021/acsami.8b09062
- Choudhury S. // Curr. Opin. Electrochem. 2020. V. 21. P. 303–310. https://doi.org/10.1016/j.coelec.2020.03.013.112
- Zhang Q., Huang Q., Hao S.M., Deng S., He Q., Lin Z., Yang Y. // Adv. Sci. 2022. V. 9. № 2. P. 2103798. https://doi.org/10.1002/advs.202103798
- Lopez C.V., Maladeniya C.P., Smith R.C. // Electrochem. 2020. V. 1. P. 226–259. https://doi.org/10.3390/electrochem1030016
- Hu Y., Chen W., Lei T., Jiao Y., Huang J., Hu A., Gong C., Yan C., Wang X., Xiong J. // Adv. Energy Mater. 2020. V. 10. P. 2000082. https://doi.org/10.1002/aenm.202000082
- Chen J.M., Duan H., Kong Y., Tian B., Ning G.H., Li D. // Energy Fuels. 2022. V. 36. № 11. P. 5998–6004. https://doi.org/10.1021/acs.energyfuels.2c01035
- Simmonds A.G., Griebel J.J., Park J., Kim K.R., Chung W.J., Oleshko V.P., Kim J., Kim E.T., Glass R.S., Soles C.L., Sung Y., Char K., Pyun J. // ACS Macro Letters. 2014. V. 3. P. 229–232. https://doi.org/10.1021/mz400649w
- Zhao F., Li Y., Feng W. // Small Methods. 2018. V. 2. P. 1800156. https://doi.org/10.1002/smtd.201800156
- Gomez I., Mecerreyes D., Blazquez J.A., Leonet O., Youcef H.B., Li C., Gómez-Cámer J.L., Bondarchuk O., Rodriguez-Martinez L. // J. Power Sources. 2016. V. 329. P. 72–78. https://doi.org/10.1016/j.jpowsour.2016.08.046
- Sun Z., Xiao M., Wang S., Han D., Song S., Chen G., Meng Y. // J. Mater. Chem. A. 2014. V. 2. P. 9280–9286. https://doi.org/10.1039/C4TA00779D
- Zhang Y., Griebel J.J., Dirlam P.T., Nguyen N.A., Glass R.S., Mackay M.E., Char K., Pyun J. // J. Polym. Sci. Part A: Polym. Chem. 2016. V. 55. № 1. P. 107–116. https://doi.org/10.1002/pola.28266
- Gomez I., Leonet O., Blazquez J.A., Mecerreyes D. // ChemSusChem. 2016. V. 9. № 24. P. 3419–3425. https://doi.org/10.1002/cssc.201601474
- Huang C., Xiao J., Shao Y., Zheng J., Bennett W.D., Lu D., Saraf L.V., Engelhard M., Ji L., Zhang J., Li X., Graff G.L., Liu J. // Nat. Commun. 2014. V. 5. P. 3015. https://doi.org/10.1038/ncomms4015
- Tantis I., Bakandritsos A., Zaoralová D., Medveď M., Jakubec P., Havláková J., Zbořil R., Otyepka M. // Adv. Funct. Mater. 2021. V. 31. P. 2101326. https://doi.org/10.1002/adfm.202101326
- Jo S.-C., Hong J.-W., Choi I.-H., Kim M.-J., Kim B.G., Lee Y.-J., Choi H.Y., Kim D., Kim T.-Y., Baeg K.-J., Park J.-W. // Nano-Micro Small. 2022. V. 18. P. 2200326. https://doi.org/10.1002/smll.202200326
- Talapaneni S.N., Hwang T.H., Je S.H., Buyukcakir O., Choi J.W., Coskun A. // Angew. Chem. Int. Ed. 2016. V. 55. № 9. P. 3106–3111. https://doi.org/10.1002/anie.201511553
- Shukla S., Ghosh A., Roy P.K., Mitra S., Lochab B. // Polymer. 2016. V. 99. P. 349–357. https://doi.org/10.1016/j.polymer.2016.07.037
- Kim H., Lee J., Ahn H., Kim O., Park M.J. // Nat. Commun. 2015. V. 6. P. 7278. https://doi.org/10.1038/ncomms8278
- Yusupova A.A., Shamov A.G., Ahmetova R.T., Pervu-shin V.A., Khatsrinov A.I. // Int. J. Quantum Chem. 2011. V. 111. № 11. P. 2575–2578. https://doi.org/10.1002/qua.22754
- Yusupova A.A., Khatsrinov A.I., Ahmetova R.T. // Inorg. Materials. 2018. V. 54. P. 809–814. https://doi.org/10.1134/S0020168518080174
- Baraeva L.R., Yusupova A.A., Ahmetova R.T., Khatsrinov A.I., Mezhevich Z.V. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 1106–1010. https://doi.org/10.1134/S0036024419060049
- Yusupova A.A., Khatsrinov A.I., Shafigullin L.N. // Solid State Phenomena. 2020. V. 299. P. 181–187. https://doi.org/10.4028/www.scientific.net/SSP.299.181
- Mao J., Wang Y., Zhu J., Yu J., Hu Z. // Appl. Surf. Sci. 2018. V. 447. P. 235–243. https://doi.org/10.1016/j.apsusc.2018.03.188
- Sakaguchi Y., Tamura K. // MRS Online Proceedings Library. 2006. V. 918. P. 135–141. https://doi.org/10.1557/PROC-0918-H03-02
- Tarasova N.P., Zanin A.A., Sobolev P.S., Krivoboro-dov E.G. // Dokl. Chem. 2017. V. 473. P. 78–79. https://doi.org/10.1134/S0012500817040073
- Tarasova N.P., Krivoborodov E.G., Mezhuev Ya.O. // Russ. Chem. Bull. 2023. V. 72. № 2. P. 415–424. https://doi.org/10.1007/s11172-023-3809-9
- Tarasova N.P., Mezhuev Y.O., Zanin A.A., Krivoboro-dov E.G. // Dokl. Chem. 2019. V. 484. P. 8–11. https://doi.org/10.1134/S0012500819010051
- Tarasova N., Krivoborodov E., Zanin A., Mezhuev Y. // Pure Appl. Chem. 2021. V. 93. № 1. P. 29–37. https://doi.org/10.1515/pac-2019-0804
- Tarasova N., Krivoborodov E., Egorova A., Zanin A., Glukhov L., Toropygin I., Mezhuev Ya. // Pure Appl. Chem. 2020. V. 92. P. 1297–1304. https://doi.org/10.1515/pac-2019-1211
- Tarasova N., Krivoborodov E., Zanin A., Toropygin I., Pascal E., Dyatlov V., Mezhuev Ya. // Macromol. Res. 2021. V. 29. P. 847–850. https://doi.org/10.1007/s13233-021-9104-6
- Tarasova N., Zanin A., Krivoborodov E., Motyakin M., Levina I., Dyatlov V., Toropygin I., Dyakonov V., Mezhuev Y. // Green Chem. Lett. Rev. 2021. V. 14. P. 435–441. https://doi.org/10.1080/17518253.2021.1926550
- Tarasova N., Zanin A., Krivoborodov E., Toropygin I., Pascal E., Mezhuev Ya. // Polymers. 2021. V. 13. P. 1806. https://doi.org/10.3390/polym13111806
- Tarasova N., Krivoborodov E., Zanin A., Pascal E., Toropygin I., Artyukhov A., Muradyan S., Mezhuev Ya. // Gels. 2022. V. 8. P. 136. https://doi.org/10.3390/gels8020136
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 














































