Preparation of copper and nickel based nanoparticles by magnetron sputtering and their use in sulfur–sulfur bond activation reaction
- Autores: Kashin А.S.1
- 
							Afiliações: 
							- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
 
- Edição: Volume 518, Nº 1 (2024)
- Páginas: 23-31
- Seção: CHEMISTRY
- URL: https://rjeid.com/2686-9535/article/view/680958
- DOI: https://doi.org/10.31857/S2686953524050022
- EDN: https://elibrary.ru/JHCTCU
- ID: 680958
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The present work is devoted to a systematic study of the advantages and limitations of the magnetron sputtering method, which is a convenient and promising way to obtain nanosized particles directly from the bulk metal, when it is used to prepare nanoparticles of the first-row transition metals. In the course of the study, variation of sputtering media based on ionic liquids, eutectic solvents, low and high molecular weight organic compounds was carried out. Particles of copper, nickel, a copper-nickel alloy and a copper-zinc alloy were obtained. Using the example of the activation reaction of the sulfur–sulfur bond in diphenyl disulfide, it has been shown that up to 96% of the sputtered copper can be effectively used in catalysis, whereas in the case of nickel and zinc about three quarters of the metal can be converted to an inactive form, at the same time readily oxidizable components can act as sacrificial stabilizers for moderately active metal particles in sputtering two-component alloys.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
А. Kashin
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: a.kashin@ioc.ac.ru
				                					                																			                												                	Rússia, 							119991, Moscow						
Bibliografia
- Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. № 4. P. 2249–2295. http s://doi.org/10.1021/acs.chemrev.7b00443
- Dalton T., Faber T., Glorius F. // ACS Cent. Sci. 2021. V. 7. № 2. P. 245–261. http s://doi.org/10.1021/acscentsci.0c01413
- Chan A.Y., Perry I.B., Bissonnette N.B., Buksh B.F., Edwards G.A., Frye L.I., Garry O.L., Lavagnino M.N., Li B.X., Liang Y., Mao E., Millet A., Oakley J.V., Reed N.L., Sakai H.A., Seath C.P., MacMillan D.W.C. // Chem. Rev. 2022. V. 122. № 2. P. 1485–1542. http s://doi.org/10.1021/acs.chemrev.1c00383
- Devendar P., Qu R.-Y., Kang W.-M., He B., Yang G.-F. // J. Agric. Food Chem. 2018. V. 66. № 34. P. 8914–8934. http s://doi.org/10.1021/acs.jafc.8b03792
- Hayler J.D., Leahy D.K., Simmons E.M. // Organometallics. 2019. V. 38. № 1. P. 36–46. http s://doi.org/10.1021/acs.organomet.8b00566
- Xia Y., Yang H., Campbell C.T. // Acc. Chem. Res. 2013. V. 46. № 8. P. 1671–1672. http s://doi.org/10.1021/ar400148q
- Xie C., Niu Z., Kim D., Li M., Yang P. // Chem. Rev. 2020. V. 120. № 2. P. 1184–1249. http s://doi.org/10.1021/acs.chemrev.9b00220
- Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 461–463. http s://doi.org/10.1021/acs.chemrev.8b00696
- Hong K., Sajjadi M., Suh J.M., Zhang K., Nasrollahzadeh M., Jang H.W., Varma R.S., Shokouhimehr M. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070–2103. http s://doi.org/10.1021/acsanm.9b02017
- Ohtaka A. // Catalysts. 2021. V. 11. № 11. P. 1266. http s://doi.org/10.3390/catal11111266
- Cha J.-H., Park S.-M., Hong Y.K., Lee H., Kang J.W., Kim K.-S. // J. Nanosci. Nanotechnol. 2012. V. 12. № 4. P. 3641–3645. http s://doi.org/10.1166/jnn.2012.5590
- Cloud J.E., McCann K., Perera K.A.P., Yang Y. // Small. 2013. V. 9. № 15. P. 2532–2536. http s://doi.org/10.1002/smll.201202470
- Cloud J.E., Yoder T.S., Harvey N.K., Snow K., Yang Y. // Nanoscale. 2013. V. 5. № 16. P. 7368–7378. http s://doi.org/10.1039/c3nr02404k
- Sarcina L., García-Manrique P., Gutiérrez G., Ditaranto N., Cioffi N., Matos M., Blanco-López M.d.C. // Nanomaterials. 2020. V. 10. № 8. P. 1542. http s://doi.org/10.3390/nano10081542
- Zhang J., Chaker M., Ma D. // J. Colloid Interface Sci. 2017. V. 489. P. 138–149. http s://doi.org/10.1016/j.jcis.2016.07.050
- Jiang Z., Li L., Huang H., He W., Ming W. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14658. http s://doi.org/10.3390/ijms232314658
- Balachandran A., Sreenilayam S.P., Madanan K., Thomas S., Brabazon D. // Results Eng. 2022. V. 16. P. 100646. http s://doi.org/10.1016/j.rineng.2022.100646
- Nyabadza A., Vazquez M., Brabazon D. // Crystals. 2023. V. 13. № 2. P. 253. http s://doi.org/10.3390/cryst13020253
- Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. // Coord. Chem. Rev. 2013. V. 257. № 17–18. P. 2468–2483. http s://doi.org/10.1016/j.ccr.2013.01.013
- Cha I.Y., Yoo S.J., Jang J.H. // J. Electrochem. Sci. Technol. 2016. V. 7. № 1. P. 13–26. http s://doi.org/10.5229/JECST.2016.7.1.19
- Qadir M.I., Kauling A., Ebeling G., Fartmann M., Grehl T., Dupont J. // Aust. J. Chem. 2019. V. 72. № 2. P. 49–54. http s://doi.org/10.1071/CH18183
- Cano I., Weilhard A., Martin C., Pinto J., Lodge R.W., Santos A.R., Rance G.A., Åhlgren E.H., Jónsson E., Yuan J., Li Z.Y., Licence P., Khlobystov A.N., Alves Fernandes J. // Nat. Commun. 2021. V. 12. P. 4965. http s://doi.org/10.1038/s41467-021-25263-6
- Nguyen M.T., Deng L., Yonezawa T. // Soft Matter. 2022. V. 18. № 1. P. 19–47. http s://doi.org/10.1039/D1SM01002F
- Hirano M., Enokida K., Okazaki K.-i., Kuwabata S., Yoshida H., Torimoto T. // Phys. Chem. Chem. Phys. 2013. V. 15. № 19. P. 7286–7294. http s://doi.org/10.1039/c3cp50816a
- Zhou Y.-Y., Liu C.-H., Liu J., Cai X.-L., Lu Y., Zhang H., Sun X.-H., Wang S.-D. // Nano-Micro Lett. 2016. V. 8. № 4. P. 371–380. http s://doi.org/10.1007/s40820-016-0096-2
- Liu C., Cai X., Wang J., Liu J., Riese A., Chen Z., Sun X., Wang S.-D. // Int. J. Hydrogen Energy. 2016. V. 41. № 31. P. 13476–13484. http s://doi.org/10.1016/j.ijhydene.2016.05.194
- Sriram P., Kumar M.K., Selvi G.T., Jha N.S., Mohanapriya N., Jha S.K. // Electrochim. Acta. 2019. V. 323. P. 134809. http s://doi.org/10.1016/j.electacta.2019.134809
- Tsuda T., Yoshii K., Torimoto T., Kuwabata S. // J. Power Sources. 2010. V. 195. № 18. P. 5980–5985. http s://doi.org/10.1016/j.jpowsour.2009.11.027
- Cha I.Y., Ahn M., Yoo S.J., Sung Y.-E. // RSC Adv. 2014. V. 4. № 73. P. 38575–38580. http s://doi.org/10.1039/C4RA05213G
- Zhu M., Nguyen M.T., Sim W.J., Yonezawa T. // Mater. Adv. 2022. V. 3. № 24. P. 8967–8976. http s://doi.org/10.1039/D2MA00688J
- Chung M.W., Cha I.Y., Ha M.G., Na Y., Hwang J., Ham H.C., Kim H.-J., Henkensmeier D., Yoo S.J., Kim J.Y., Lee S.Y., Park H.S., Jang J.H. // Appl. Catal. B: Environ. 2018. V. 237. P. 673–680. http s://doi.org/10.1016/j.apcatb.2018.06.022
- Oda Y., Hirano K., Yoshii K., Kuwabata S., Torimoto T., Miura M. // Chem. Lett. 2010. V. 39. № 10. P. 1069–1071. http s://doi.org/10.1246/cl.2010.1069
- Luza L., Gual A., Eberhardt D., Teixeira S.R., Chiaro S.S.X., Dupont J. // ChemCatChem. 2013. V. 5. № 8. P. 2471–2478. http s://doi.org/10.1002/cctc.201300123
- Chang J.-B., Liu C.-H., Liu J., Zhou Y.-Y., Gao X., Wang S.-D. // Nano-Micro Lett. 2015. V. 7. № 3. P. 307–315. http s://doi.org/10.1007/s40820-015-0044-6
- Liu C.-H., Liu J., Zhou Y.-Y., Cai X.-L., Lu Y., Gao X., Wang S.-D. // Carbon. 2015. V. 94. P. 295–300. http s://doi.org/10.1016/j.carbon.2015.07.003
- Kashin A.S., Prima D.O., Arkhipova D.M., Ananikov V.P. // Small. 2023. V. 19. № 43. P. 2302999. http s://doi.org/10.1002/smll.202302999
- Lee C.-F., Liu Y.-C., Badsara S.S. // Chem. – Asian J. 2014. V. 9. № 3. P. 706–722. http s://doi.org/10.1002/asia.201301500
- Lee C.-F., Basha R.S., Badsara S.S. // Top. Curr. Chem. 2018. V. 376. № 3. P. 25. http s://doi.org/10.1007/s41061-018-0203-6
- Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2022. V. 122. № 21. P. 16110–16293. http s://doi.org/10.1021/acs.chemrev.1c00836
- Kashin A.S., Arkhipova D.M., Sahharova L.T., Burykina J.V., Ananikov V.P. // ACS Catal. 2024. V. 14. № 8. P. 5804–5816. http s://doi.org/10.1021/acscatal.3c06258
Arquivos suplementares
 
				
			Nota
Represented by Academician of the RAS V.P. Ananikov
 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




