AMMONIUM AMPHIPHILES BASED ON NATURAL COMPOUNDS: DESIGN, SYNTHESIS, PROPERTIES AND BIOMEDICAL APPLICATIONS. A REVIEW
- Autores: Pashirova T.N.1, Shaikhutdinova Z.M.1, Mironov V.F.1, Bogdanov A.V.1
- 
							Afiliações: 
							- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
 
- Edição: Volume 509, Nº 1 (2023)
- Páginas: 3-21
- Seção: CHEMISTRY
- URL: https://rjeid.com/2686-9535/article/view/651980
- DOI: https://doi.org/10.31857/S2686953522600544
- EDN: https://elibrary.ru/OVIBOP
- ID: 651980
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This review analyzes and systematizes data for the last three years on the use of amphiphilic quaternary ammonium compounds (QAC) based on natural structures in the search for new antibacterial and anticancer agents. As part of the analysis, publications on the properties of QAC based on heterocyclic and pyridine alkaloids, alkylated phenols, terpenoids, and steroids were considered. Attempts have been made to reveal the relationship between the structure of ammonium salts and their supramolecular self-organization, biological activity, and cytotoxicity. From the point of view of ease of chemical modification, availability, biorelevance and effectiveness against pathogen bacterial strains and antitumor activity, prospects for the use of natural platforms for extended trials have been identified.
Palavras-chave
Sobre autores
T. Pashirova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
														Email: abogdanov@inbox.ru
				                					                																			                												                								Russian, 
420088, Kazan						
Z. Shaikhutdinova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
														Email: abogdanov@inbox.ru
				                					                																			                												                								Russian, 
420088, Kazan						
V. Mironov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
														Email: abogdanov@inbox.ru
				                					                																			                												                								Russian, 
420088, Kazan						
A. Bogdanov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: abogdanov@inbox.ru
				                					                																			                												                								Russian, 
420088, Kazan						
Bibliografia
- Curreri A.M., Mitragotri S., Tanner E.E.L. // Adv. Sci. 2021. V. 8. № 17. Art. № 2004819. https://doi.org/10.1002/advs.202004819
- Nikfarjam N., Ghomi M., Agarwal T., Hassanpour M., Sharifi E., Khorsandi D., Ali Khan M., Rossi F., Rossetti A., Nazarzadeh Zare E., Rabiee N., Afshar D., Vosough M., Kumar Maiti T., Mattoli V., Lichtfouse E., Tay F.R., Makvandi P. // Adv. Funct. Mater. 2021. V. 31. № 42. Art. № 2104148. https://doi.org/10.1002/adfm.202104148
- Bureš F. // Top. Curr. Chem. 2019. V. 377. № 3. Art. № 14. https://doi.org/10.1007/s41061-019-0239-2
- Obłąk E., Futoma-Kołoch B., Wieczyńska A. // World J. Microbiol. Biotechnol. 2021. V. 37. № 22. Art. № 22. https://doi.org/10.1007/s11274-020-02978-0
- Mahoney A.R., Safaee M.M., Wuest W.M., Furst A.L. // iScience. 2021. V. 24. № 4. Art. № 102304. https://doi.org/10.1016/j.isci.2021.102304
- Kwasniewska D., Chen Y.-L., Wieczorek D. // Pathogens. 2020. V. 9. № 6. Art. № 459. https://doi.org/10.3390/pathogens9060459
- Yang Z., Yuan Q., Li X., Hu A, Yu S. // Inter. J. Sci. 2022. V. 9. № 2. P. 152–158.
- Sharma V.D., Aifuwa E.O., Heiney P.A., Ilies M.A. // Biomaterials. 2013. V. 34. № 28. P. 6906–6921. https://doi.org/10.1016/j.biomaterials.2013.05.029
- Osimitz T.G., Droege W. // Toxicol. Res. Appl. 2021. V. 5. P. 1–16.https://doi.org/10.1177/23978473211049085
- Xie X., Cong W., Zhao F., Li H., Xin W., Hou G., Wang C. // J. Enzyme Inhib. Med. Chem. 2018. V. 33. № 1. P. 98–105. https://doi.org/10.1080/14756366.2017.1396456
- Zheng L., Li J., Yu M., Jia W., Duan S., Cao D., Ding X., Yu B., Zhang X., Xu F.-J. // J. Am. Chem. Soc. 2020. V. 142. № 47. P. 20257–20269. https://doi.org/10.1021/jacs.0c10771
- Schrank C.L., Wilt I.K., Monteagudo Ortiz C., Haney B.A., Wuest W.M. // RSC Med. Chem. 2021. V. 12. № 8. P. 1312–1324. https://doi.org/10.1039/D1MD00151E
- Jennings M.C., Minbiole K.P.C., Wuest W.M. // ACS Infect. Dis. 2015. V. 1. № 7. P. 288–303. https://doi.org/10.1021/acsinfecdis.5b00047
- Hoque J., Konai M.M., Samaddar S., Gonuguntala S., Manjunath G.B., Ghosh C., Haldar J. // Chem. Commun. 2015. V. 51. № 71. P. 13670–13673. https://doi.org/10.1039/C5CC05159B
- Ahmady A.R., Hosseinzadeh P., Solouk A., Akbari S., Szulc A.M., Brycki B.E. // Adv. Colloid Interface Sci. 2022. V. 299. № 2022. Art. № 102581. https://doi.org/10.1016/j.cis.2021.102581
- Zhang S., Ding S., Yu J., Chen X., Lei Q., Fang W. // Langmuir. 2015. V. 31. № 44. P. 12161–12169. https://doi.org/10.1021/acs.langmuir.5b01430
- Oblak E., Piecuch A., Rewak-Soroczynska J., Paluch E. // Appl. Microbiol. Biotechnol. 2019. V. 103. № 2. P. 625–632. https://doi.org/10.1007/s00253-018-9523-2
- Zhou X., Liu M., Han J., Wang L., Xiao Z., Zhu W.-H. // Ind. Eng. Chem. Res. 2022. V. 61. № 12. P. 4202–4211. https://doi.org/10.1021/acs.iecr.2c00129
- Sikora K., Nowacki A., Szweda P., Woziwodzka A., Bartoszewska S., Piosik J., Dmochowska B. // Molecules. 2022. V. 27. № 3. Art. № 757. https://doi.org/10.3390/molecules27030757
- Zhang X., Kong H., Zhang X., Jia H., Ma X., Miao H., Mu Y., Zhang G. // Green Chem. 2021. V. 23. № 17. P. 6548–6554. https://doi.org/10.1039/D1GC01525G
- Gilbert E.A., Guastavino J.F., Nicollier R.A., Lancelle M.V., Russell-White K., Murguia M.C. // J. Oleo Sci. 2021. V. 70. № 1. P. 59–65. https://doi.org/10.5650/jos.ess20216
- Perez L., Pons R., Oliveira de Sousa F.F., Moran M. del C., Ramos da Silva A., Pinazo A. // J. Mol. Liq. 2021. V. 339. Art. № 116819. https://doi.org/10.1016/j.molliq.2021.116819
- Perinelli D.R., Petrelli D., Vitali L.A., Vllasaliu D., Cespi M., Giorgioni G., Elmowafy E., Bonacucina G., Palmieri G.F. // J. Mol. Liq. 2019. V. 283. P. 249–256. https://doi.org/10.1016/j.molliq.2019.03.083
- Andreeva O.V., Garifullin B.F., Zarubaev V.V., Slita A.V., Yesaulkova I.L., Volobueva A.S., Belenok M.G., Man’kova M.A., Saifina L.F., Shulaeva M.M., Voloshi-na A.D., Lyubina A.P., Semenov V.E., Kataev V.E. // Molecules. 2021. V. 26. № 12. Art. № 3678. https://doi.org/10.3390/molecules26123678
- Chowdhury S., Rakshit A., Acharjee A., Saha B. // J. Mol. Liq. 2021. V. 324. Art. № 115105. https://doi.org/10.1016/j.molliq.2020.115105
- Kaczmarek D.K., Rzemieniecki T., Gwiazdowska D., Kleiber T., Praczyk T., Pernak J. // J. Mol. Liq. 2021. V. 327. Art. № 114792. https://doi.org/10.1016/j.molliq.2020.114792
- Kaczmarek D.K., Kleiber T., Wenping L., Niemczak M., Chrzanowski Ł., Pernak J. // ACS Sustain. Chem. Eng. 2020. V. 8. № 3. P. 1591–1598. https://doi.org/10.1021/acssuschemeng.9b06378
- Wang W., Zhu J., Tang G., Huo H., Zhang W., Liang Y., Dong H., Yang J., Cao Y. // New J. Chem. 2019. V. 43. № 2. P. 827–833. https://doi.org/10.1039/C8NJ05903A
- Grigoras A.G. // Environ. Chem. Lett. 2021. V. 19. № 4. P. 3009–3022. https://doi.org/10.1007/s10311-021-01215-w
- Makvandi P., Jamaledin R., Jabbari M., Nikfarjam N., Borzacchiello A. // Dent. Mater. 2018. V. 34. № 6. P. 851–867. https://doi.org/10.1016/j.dental.2018.03.014
- Zubris D., Minbiole K., Wuest W. // Curr. Top. Med. Chem. 2016. V. 17. № 3. P. 305–318. https://doi.org/10.2174/1568026616666160829155805
- Andreica B.-I., Cheng X., Marin L. // Eur. Polym. J. 2020. V. 139. Art. № 110016. https://doi.org/10.1016/j.eurpolymj.2020.110016
- Jiao Y., Niu L., Ma S., Li J., Tay F.R., Chen J. // Prog. Polym. Sci. 2017. V. 71. P. 53–90. https://doi.org/10.1016/j.progpolymsci.2017.03.001
- Martin F., Grkovic T., Sykes M.L., Shelper T., Avery V.M., Camp D., Quinn R.J., Davis R.A. // J. Nat. Prod. 2011. V. 74. № 11. P. 2425–2430. https://doi.org/10.1021/np200700f
- Joondan N., Caumul P., Jackson G., Jhaumeer Laul-loo S. // Chem. Phys. Lipids. 2021. V. 235. Art. № 105051. https://doi.org/10.1016/j.chemphyslip.2021.105051
- Sokolova A.S., Yarovaya O.I., Shernyukov A.V., Pokrovsky M.A., Pokrovsky A.G., Lavrinenko V.A., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Beklemishev A.B., Salakhutdinov N.F. // Bioorg. Med. Chem. 2013. V. 21. № 21. P. 6690–6698. https://doi.org/10.1016/j.bmc.2013.08.014
- Radman Kastelic A., Odzak R., Pezdirc I., Sovic K., Hrenar T., Cipak Gasparovic A., Skocibusic M., Primozic I. // Molecules. 2019. V. 24. № 14. Art. № 2675. https://doi.org/10.3390/molecules24142675
- Chauhan D.S., Quraishi M.A., Qurashi A. // J. Mol. Liq. 2021. V. 326. Art. № 115117. https://doi.org/10.1016/j.molliq.2020.115117
- Jayakumar J., Cheng C.-H. // J. Chinese Chem. Soc. 2018. V. 65. № 1. P. 11–23. https://doi.org/10.1002/jccs.201700062
- Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., Kuca K. // Bioorg. Med. Chem. Lett. 2014. V. 24. № 22. P. 5238–5241. https://doi.org/10.1016/j.bmcl.2014.09.060
- Soukup O., Benkova M., Dolezal R., Sleha R., Malinak D., Salajkova S., Markova A., Hympanova M., Prchal L., Ryskova L., Hobzova L., Sepcic K., Gunde-Cimerman N., Korabecny J., Jun D., Bostikova V., Bostik P., Marek J. // Eur. J. Med. Chem. 2020. V. 206. Art. № 112584. https://doi.org/10.1016/j.ejmech.2020.112584
- Zhou C., Wang Y. // Curr. Opin. Colloid Interface Sci. 2020. V. 45. P. 28–43. https://doi.org/10.1016/j.cocis.2019.11.009
- Buzoglu Kurnaz L., Luo Y., Yang X., Alabresm A., Leighton R., Kumar R., Hwang J., Decho A.W., Nagarkatti P., Nagarkatti M., Tang Ch. // Bioact. Mater. 2023. V. 20. P. 519–527. https://doi.org/10.1016/j.bioactmat.2022.06.009
- Drakontis C.E., Amin S. // Curr. Opin. Colloid Interface Sci. 2020. V. 48. P. 77–90. https://doi.org/10.1016/j.cocis.2020.03.013
- Bjerk T.R., Severino P., Jain S., Marques C., Silva A.M., Pashirova T., Souto E.B. // Bioengineering. 2021. V. 8. № 8. Art. № 115. https://doi.org/10.3390/bioengineering8080115
- Zhang W., Kaplan A.R., Davison E.K., Freeman J.L., Brimble M.A., Wuest W.M. // Nat. Prod. Rep. 2021. V. 38. № 5. P. 880–889. https://doi.org/10.1039/D0NP00052C
- Imperatore C., Aiello A., D’Aniello F., Senese M., Men-na M. // Molecules. 2014. V. 19. № 12. P. 20391–20423. https://doi.org/10.3390/molecules191220391
- Parmar V.S., Jain S.C., Bisht K.S., Jain R., Taneja P., Jha A., Tyagi O.D., Prasad A.K., Wengel J., Olsen C.E., Boll P.M. // Phytochemistry. 1997. V. 46. № 4. P. 597–673. https://doi.org/10.1016/S0031-9422(97)00328-2
- Tantawy A.H., Soliman K.A., Abd El-Lateef H.M. // J. Clean. Prod. 2020. V. 250. Art. № 119510. https://doi.org/10.1016/j.jclepro.2019.119510
- Tamaddon F., Azadi D. // J. Mol. Liq. 2018. V. 255. P. 406–412. https://doi.org/10.1016/j.molliq.2017.12.107
- Hajipour A.R., Heidari Y., Kozehgary G. // RSC Adv. 2015. V. 5. № 75. P. 61179–61183. https://doi.org/10.1039/C5RA08488A
- Tamaddon F., Azadi D. // J. Mol. Liq. 2018. V. 249. P. 789–794. https://doi.org/10.1016/j.molliq.2017.10.153
- Singh G., Kamboj R., Singh Mithu V., Chauhan V., Kaur T., Kaur G., Singh S., Singh Kang T. // J. Colloid Interface Sci. 2017. V. 496. P. 278–289. https://doi.org/10.1016/j.jcis.2017.02.021
- Rabbani G.H., Butler T., Knight J., Sanyal S.C., Alam K. // J. Infect. Dis. 1987. V. 155. № 5. P. 979–984. https://doi.org/10.1093/infdis/155.5.979
- Wu J., Ma J.-J., Liu B., Huang L., Sang X.-Q., Zhou L.-J. // J. Agric. Food Chem. 2017. V. 65. № 30. P. 6100–6113. https://doi.org/10.1021/acs.jafc.7b01259
- Habtemariam S. // Molecules. 2020. V. 25. № 6. Art. No. 1426. https://doi.org/10.3390/molecules25061426
- Zou K., Li Z., Zhang Y., Zhang H., Li B., Zhu W., Shi J., Jia Q., Li Y. // Acta Pharmacol. Sin. 2017. V. 38. № 2. P. 157–167. https://doi.org/10.1038/aps.2016.125
- Wang Z.-C., Wang J., Chen H., Tang J., Bian A.-W., Liu T., Yu L.-F., Yi Z., Yang F. // Bioorg. Med. Chem. Lett. 2020. V. 30. № 2. Art. № 126821. https://doi.org/10.1016/j.bmcl.2019.126821
- Huang S., Zhu B., Wang K., Yu M., Wang Z., Li Y., Liu Y., Zhang P., Li S., Li Y., Liu A.-L., Wang Q.-M. // Pest Manag. Sci. 2022. V. 78. № 5. P. 2011–2021. https://doi.org/10.1002/ps.6824
- Marois I., Cloutier A., Meunier I., Weingartl H.M., Cantin A.M., Richter M.V. // PLoS One. 2014. V. 9. № 10. e110631. https://doi.org/10.1371/journal.pone.0110631
- Baroni A., Paoletti I., Ruocco E., Ayala F., Corrado F., Wolf R., Tufano M.A., Donnarumma G. // J. Dermatol. Sci. 2007. V. 47. № 3. P. 253–255. https://doi.org/10.1016/j.jdermsci.2007.05.009
- Malakar S., Sreelatha L., Dechtawewat T., Noisakran S., Yenchitsomanus P., Chu J.J.H., Limjindaporn T. // Virus Res. 2018. V. 255. P. 171–178. https://doi.org/10.1016/j.virusres.2018.07.018
- Wang X., Zeng Y., Sheng L., Larson P., Liu X., Zou X., Wang S., Guo K., Ma C., Zhang G., Cui H., Ferguson D.M., Li Y., Zhang J., Aldrich C.C. // J. Med. Chem. 2019. V. 62. № 5. P. 2305–2332. https://doi.org/10.1021/acs.jmedchem.8b01353
- Baidya M., Horn M., Zipse H., Mayr H. // J. Org. Chem. 2009. V. 74. № 18. P. 7157–7164. https://doi.org/10.1021/jo901670w
- McNeice P., Vallana F.M.F., Coles S.J., Horton P.N., Marr P.C., Seddon K.R., Marr A.C. // J. Mol. Liq. 2020. V. 297. Art. № 111773. https://doi.org/10.1016/j.molliq.2019.111773
- Pernak J., Rzemieniecki T., Klejdysz T., Qu F., Ro-gers R.D. // ACS Sustain. Chem. Eng. 2020. V. 8. № 25. P. 9263–9267. https://doi.org/10.1021/acssuschemeng.0c03501
- Rzemieniecki T., Kleiber T., Pernak J. // RSC Adv. 2021. V. 11. № 44. P. 27530–27540. https://doi.org/10.1039/D1RA04805H
- Verma A., Kumar Waiker D., Bhardwaj B., Saraf P., Shrivastava S.K. // Bioorg. Chem. 2022. V. 119. Art. № 105562. https://doi.org/10.1016/j.bioorg.2021.105562
- Tsitsipa E., Rogers J., Casalotti S., Belessiotis-Richards C., Zubko O., Weil R.S., Howard R., Bisby J.A., Reeves S. // Neuropsychopharmacology. 2022. V. 47. № 4. P. 880–890. https://doi.org/10.1038/s41386-021-01255-4
- Giacobini E., Cuello A.C., Fisher A. // Brain. 2022. V. 145. № 7. P. 2250–2275. https://doi.org/10.1093/brain/awac096
- Venkateswaran A., Reddy Y.T., Sonar V.N., Muthusamy V., Crooks P.A., Freeman M.L., Sekhar K.R. // Bioorg. Med. Chem. Lett. 2010. V. 20. № 24. P. 7323–7326. https://doi.org/10.1016/j.bmcl.2010.10.060
- Odzak R. // Period. Biol. 2020. V. 121–122. № 1–2. P. 15–21. https://hrcak.srce.hr/file/370031
- Bhadani A., Endo T., Koura S., Sakai K., Abe M., Sakai H. // Langmuir. 2014. V. 30. № 30. P. 9036–9044. https://doi.org/10.1021/la502098h
- Skocibusic M., Odzak R., Stefanic Z., Krizic I., Kristo L., Jovic O., Hrenar T., Primozic I., Jurasin D. // Colloids Surf. B Biointerfaces. 2016. V. 140. P. 548–559. https://doi.org/10.1016/j.colsurfb.2015.11.023
- Odzak R., Sprung M., Soldo B., Skocibusic M., Gudelj M., Muic A., Primozic I. // Open Chem. 2017. V. 15. № 1. P. 320–331. https://doi.org/10.1515/chem-2017-0031
- Burilova E.A., Pashirova T.N., Lukashenko S.S., Sapu-nova A.S., Voloshina A.D., Zhiltsova E.P., Campos J.R., Souto E.B., Zakharova L.Y. // J. Mol. Liq. 2018. V. 272. P. 722–730. https://doi.org/10.1016/j.molliq.2018.10.008
- Bazina L., Maravic A., Krce L., Soldo B., Odzak R., Popovic V.B., Aviani I., Primozic I., Sprung M. // Eur. J. Med. Chem. 2019. V. 163. P. 626–635. https://doi.org/10.1016/j.ejmech.2018.12.023
- Li R., Wang Z., Xu Q., Yao S., Li Z., Song H. // J. Mol. Struct. 2020. V. 1209. Art. № 127918. https://doi.org/10.1016/j.molstruc.2020.127918
- Skrzypczak N., Pyta K., Ruszkowski P., Mikolajczak P., Kucinska M., Murias M., Gdaniec M., Bartl F., Przybylski P. // J. Enzyme Inhib. Med. Chem. 2021. V. 36. № 1. P. 1898–1904. https://doi.org/10.1080/14756366.2021.1960829
- Kar S., Sanderson H., Roy K., Benfenati E., Leszczyn-ski J. // Chem. Rev. 2022. V. 122. № 3. P. 3637–3710. https://doi.org/10.1021/acs.chemrev.1c00631
- Viji M., Lanka S., Sim J., Jung C., Lee H., Vishwanath M., Jung J.-K. // Catalysts. 2021. V. 11. № 8. Art. № 1013. https://doi.org/10.3390/catal11081013
- Burakova E.A., Saranina I.V., Tikunova N.V., Nazarki-na Z.K., Laktionov P.P., Karpinskaya L.A., Anikin V.B., Zarubaev V.V., Silnikov V.N. // Bioorg. Med. Chem. 2016. V. 24. № 22. P. 6012–6020. https://doi.org/10.1016/j.bmc.2016.09.064
- Pashirova T.N., Ziganshina A.Y., Sultanova E.D., Lukashenko S.S., Kudryashova Y.R., Zhiltsova E.P., Zakharova L.Y., Konovalov A.I. // Colloids Surf., A. 2014. V. 448. P. 67–72. https://doi.org/10.1016/j.colsurfa.2014.02.012
- Pashirova T.N., Sapunova A.S., Lukashenko S.S., Burilova E.A., Lubina A.P., Shaihutdinova Z.M., Gerasimo-va T.P., Kovalenko V.I., Voloshina A.D., Souto E.B., Zakharova L.Y. // Int. J. Pharm. 2020. V. 575. Art. № 18953. https://doi.org/10.1016/j.ijpharm.2019.118953
- Engel R., Ghani I., Montenegro D., Thomas M., Kla-ritch-Vrana B., Castano A., Friedman L., Leb J., Rothman L., Lee H., Capodiferro C., Ambinder D., Cere E., Awad Ch., Sheikh F., Rizzo J., Nisbett L.-M., Testani E., Melkonian K. // Molecules. 2011. V. 16. № 2. P. 1508–1518. https://doi.org/10.3390/molecules16021508
- VanKoten H.W., Dlakic W.M., Engel R., Cloninger M.J. // Mol. Pharm. 2016. V. 13. № 11. P. 3827–3834. https://doi.org/10.1021/acs.molpharmaceut.6b00628
- Sreeperumbuduru R.S., Abid Z.M., Claunch K.M., Chen H.-H., McGillivray S.M., Simanek E.E. // RSC Adv. 2016. V. 6. № 11. P. 8806–8810. https://doi.org/10.1039/C5RA10388F
- Aries M.L., Cloninger M.J. // Int. J. Mol. Sci. 2021. V. 22. № 24. Art. № 13606. https://doi.org/10.3390/ijms222413606
- Pashirova T.N., Zhil’tsova E.P., Kashapov R.R., Lukashenko S.S., Litvinov A.I., Kadirov M.K., Zakharo-va L.Y., Konovalov A.I. // Russ. Chem. Bull. 2010. V. 59. № 9. P. 1745–1752. https://doi.org/10.1007/s11172-010-0307-9
- Zhiltsova E.P., Pashirova T.N., Kashapov R.R., Gaisin N.K., Gnezdilov O.I., Lukashenko S.S., Voloshina A.D., Kulik N.V., Zobov V.V., Zakharova L.Y., Konovalov A.I. // Russ. Chem. Bull. 2012. V. 61. № 1. P. 113–120. https://doi.org/10.1007/s11172-012-0016-7
- Pashirova T.N., Lukashenko S.S., Zakharov S.V., Volo-shina A.D., Zhiltsova E.P., Zobov V.V., Souto E.B., Zakharova L.Y. // Colloids Surf., B. 2015. V. 127. P. 266–273. https://doi.org/10.1016/j.colsurfb.2015.01.044
- Pashirova T.N., Burilova E.A., Lukashenko S.S., Gaysin N.K., Gnezdilov O.I., Sapunova A.S., Fernan-des A.R., Voloshina A.D., Souto E.B., Zhiltsova E.P., Zakharova L.Y. // J. Mol. Liq. 2019. V. 296. Art. № 12062. https://doi.org/10.1016/j.molliq.2019.112062
- Zhiltsova E.P., Lukashenko S.S., Pashirova T.N., Vale-eva F.G., Zakharova L.Y. // J. Mol. Liq. 2014. V. 210. Part A. P. 136–142. https://doi.org/10.1016/j.molliq.2015.01.018
- Kontos R.C., Schallenhammer S.A., Bentley B.S., Morrison K.R., Feliciano J.A., Tasca J.A., Kaplan A.R., Bezpalko M.W., Kassel W.S., Wuest W.M., Minbiole K.P.C. // ChemMedChem. 2019. V. 14. № 1. P. 83–87. https://doi.org/10.1002/cmdc.201800622
- Leitgeb A.J., Feliciano J.A., Sanchez H.A., Allen R.A., Morrison K.R., Sommers K.J., Carden R.G., Wuest W.M., Minbiole K.P.C. // ChemMedChem. 2020. V. 15. № 8. P. 667–670. https://doi.org/10.1002/cmdc.201900662
- Yarinich L.A., Burakova E.A., Zakharov B.A., Boldyre-va E.V., Babkina I.N., Tikunova N.V., Silnikov V.N. // Eur. J. Med. Chem. 2015. V. 95. P. 563–573. https://doi.org/10.1016/j.ejmech.2015.03.033
- Guo J., Qin J., Ren Y., Wang B., Cui H., Ding Y., Mao H., Yan F. // Polym. Chem. 2018. V. 9. № 37. P. 4611–4616. https://doi.org/10.1039/C8PY00665B
- Yuan Y., Liang S., Li J., Zhang S., Zhang Y. // J. Mater. Chem. B. 2019. V. 7. № 37. P. 5620–5625. https://doi.org/10.1039/C9TB01264H
- Herman J.L., Wang Y., Lilly E.A., Lallier T.E., Peters B.M., Hamdan S., Xu X., Fidel P.L., Noverr M.C. // Antimicrob. Agents Chemother. 2017. V. 61. № 4. e02575-16. https://doi.org/10.1128/AAC.02575-16
- Fernandes A.R., dos Santos T., Granja P.L., Sanchez-Lopez E., Garcia M.L., Silva A.M., Souto E.B. // Int. J. Pharm. 2022. V. 617. Art. № 121615. https://doi.org/10.1016/j.ijpharm.2022.121615
- Herrera K.M.S., da Silva F.K., de Lima W.G., Barbo-sa C. de S., Goncalves A.M.M.N., Viana G.H.R., Soa-res A.C., Ferreira J.M.S. // Med. Chem. Res. 2020. V. 29. № 6. P. 1084–1089. https://doi.org/10.1007/s00044-020-02549-w
- Herrera K.M.S., Lopes G.F.M., Oliveira M.E., Sousa J.F., Lima W.G., Silva F.K., Brito J.C.M., Gomes A.J.P.S., Viana G.H.R., Soares A.C., Ferreira J.M.S. // Micro-biol. Res. 2022. V. 261. Art. № 127073. https://doi.org/10.1016/j.micres.2022.127073
- Araya-Cloutier C., Vincken J.-P., van Ederen R., den Besten H.M.W., Gruppen H. // Food Chem. 2018. V. 240. P. 147–155. https://doi.org/10.1016/j.foodchem.2017.07.074
- Miklasinska-Majdanik M., Kepa M., Wojtyczka R., Idzik D., Wasik T. // Int. J. Environ. Res. Public Health. 2018. V. 15. № 10. Art. № 2321. https://doi.org/10.3390/ijerph15102321
- Roy A., Fajardie P., Lepoittevin B., Baudoux J., Lapinte V., Caillol S., Briou B. // Molecules. 2022. V. 27. № 4. Art. № 1443. https://doi.org/10.3390/molecules27041443
- de Avellar I.G.J., Godoy K., de Magalhaes G.C. // J. Braz. Chem. Soc. 2000. V. 11. № 1. P. 22–26. https://doi.org/10.1590/S0103-50532000000100005
- Wang R., Luo Y., Cheng C.-J., Huang Q.-H., Huang H.-S., Qin S.-L., Tu Y.‑M. // Chem. Pap. 2016. V. 70. № 9. P. 1218–1227. https://doi.org/10.1515/chempap-2016-0052
- Ma J., Liu N., Huang M., Wang L., Han J., Qian H., Che F. // J. Mol. Liq. 2019. V. 294. Art. № 111669. https://doi.org/10.1016/j.molliq.2019.111669
- Zhao X., Lv J., Wang L., Han J. // J. Surfactants Deterg. 2021. V. 24. № 1. P. 15–33. https://doi.org/10.1002/jsde.12449
- Luo Y., Liang W., Ma W., Wang P., Zhu T., Xue S., Yuan Z., Gao H., Chen Y., Wang Y. // Nanotechnology. 2020. V. 31. № 26. Art. № 265603. https://iopscience.iop.org/article/10.1088/1361-6528/ab7aa4
- Huang M., Ma J., Wu X., Zhao M., Wang L., Che F., Qian H. // J. Surfactants Deterg. 2019. V. 22. № 6. P. 1289–1298. https://doi.org/10.1002/jsde.12324
- Kataev V.E., Strobykina I.Y., Zakharova L.Y. // Russ. Chem. Bull. 2014. V. 63. № 9. P. 1884–1900. https://doi.org/10.1007/s11172-014-0680-x
- Gabdrakhmanov D.R., Voronin M.A., Zakharova L.Y., Konovalov A.I., Khaybullin R.N., Strobykina I.Y., Kataev V.E., Faizullin D.A., Gogoleva N.E., Konnova T.A., Salnikov V.V., Zuev Yu.F. // Phys. Chem. Chem. Phys. 2013. V. 15. № 39. Art. № 16725. https://doi.org/10.1039/C3CP51511G
- Bhadani A., Rane J., Veresmortean C., Banerjee S., John G. // Soft Matter. 2015. V. 11. № 15. P. 3076–3082. https://doi.org/10.1039/C5SM00157A
- Feng X., Xiao Z., Yang Y., Chen S., Liao S., Luo H., He L., Wang Z., Fan G. // Nat. Prod. Commun. 2021. V. 16. № 2. P. 1–8. https://doi.org/10.1177/1934578X21992218
- Zhang L., Feng X.-Z., Xiao Z.-Q., Fan G.-R., Chen S.-X., Liao S.-L., Luo H., Wang Z.-D. // Int. J. Mol. Sci. 2021. V. 22. № 20. Art. № 11299. https://doi.org/10.3390/ijms222011299
- Heise N., Friedrich S., Temml V., Schuster D., Siewert B., Csuk R. // Eur. J. Med. Chem. 2022. V. 227. Art. № 113947. https://doi.org/10.1016/j.ejmech.2021.113947
- Peng Y., Chang J., Xiao Z., Huang J., Xu T., Chen S., Fan G., Liao S., Wang Z., Luo H. // Nat. Prod. Commun. 2022. V. 17. № 2. P. 1–10.https://doi.org/10.1177/1934578X221078452
- Xia X., Chen Y., Wang L., Yang Z.-G., Ma X.-D., Zhao Z.-G., Yang H.-J. // Steroids. 2021. V. 166. Art. № 108774. https://doi.org/10.1016/j.steroids.2020.108774
- Forte B., Malgesini B., Piutti C., Quartieri F., Scolaro A., Papeo G. // Mar. Drugs. 2009. V. 7. P. 705−753. https://doi.org/10.3390/md7040705
- Santos A.P., Moreno P.R.H. Alkaloids Derived from Histidine: Imidazole (Pilocarpine, Pilosine). In: Natural Products. Ramawat K., Mérillon J.M. (Eds.). Springer-Verlag, Berlin, Heidelberg, 2013. P. 861−882. https://doi.org/10.1007/978-3-642-22144-6_27
- Crncevic D., Krce L., Mastelic L., Maravic A., Soldo B., Aviani I., Primozic I., Odzak R., Sprung M. // Bioorg. Chem. 2021. V. 112. Art. № 104938. https://doi.org/10.1016/j.bioorg.2021.104938
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










