ESTIMATION OF EFFICIENCY OF OXALIC ACID APPLICATION IN SOLUTION COMBUSTION SYNTHESIS OF CATALYST FOR PRODUCTION OF HYDROGEN AND CARBON FROM METHANE
- Authors: Kurmashov P.B.1, Popov M.V.1,2, Brester A.E.1, Ukhina A.V.3, Bannov A.G.1
- 
							Affiliations: 
							- Novosibirsk State Technical University
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences
 
- Issue: Vol 511, No 1 (2023)
- Pages: 68-76
- Section: CHEMICAL TECHNOLOGY
- URL: https://rjeid.com/2686-9535/article/view/651969
- DOI: https://doi.org/10.31857/S2686953522600660
- EDN: https://elibrary.ru/YRQGXE
- ID: 651969
Cite item
Abstract
In this work, the parameters of catalyst synthesis by solution combustion method using oxalic acid as a reducing agent, were investigated. The catalysts activity in the process of obtaining hydrogen and carbon nanofibers by the catalytic decomposition of methane has been determined. The effectiveness of using this reagent for the preparation of a nickel catalyst (90% Ni/10% Al2O3) that does not require preliminary reduction with hydrogen was shown. Based on the regression analysis, it was found that among the catalyst synthesis parameters, the yields of carbon and hydrogen are most strongly influenced by temperature.
About the authors
P. B. Kurmashov
Novosibirsk State Technical University
							Author for correspondence.
							Email: kurmaschov@gmail.com
				                					                																			                												                								Russian, 630073, Novosibirsk						
M. V. Popov
Novosibirsk State Technical University; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
														Email: kurmaschov@gmail.com
				                					                																			                												                								Russian, 630073, Novosibirsk; Russian, 119991, Moscow						
A. E. Brester
Novosibirsk State Technical University
														Email: kurmaschov@gmail.com
				                					                																			                												                								Russian, 630073, Novosibirsk						
A. V. Ukhina
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences
														Email: kurmaschov@gmail.com
				                					                																			                												                								Russian, 
630090, Novosibirsk						
A. G. Bannov
Novosibirsk State Technical University
														Email: kurmaschov@gmail.com
				                					                																			                												                								Russian, 630073, Novosibirsk						
References
- Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V., Kuvshinov G.G. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179
- Shen Y., Lua A. // J. Power Sources. 2015. V. 280. P. 467–475. https://doi.org/10.1016/j.jpowsour.2015.01.057
- Wang H.Y., Lua A.C. // Chem. Eng. J. 2015. V. 262. P. 1077–1089. https://doi.org/10.1016/J.CEJ.2014.10.063
- Kenzhin R.M., Bauman Y.I., Volodin A.M., Mishakov I.V., Vedyagin A.A. // Appl. Surf. Sci. 2018. V. 427. P. 505–510. https://doi.org/10.1016/j.apsusc.2017.08.227
- Muto T., Asahara M., Miyasaka T., Asato K., Uehara T., Koshi M. // Chem. Eng. Sci. 2023. V. 274. P. 117931. https://doi.org/10.1016/j.ces.2022.117931
- Kurmashov P.B., Bannov A.G., Popov M.V., Kazakova A.A., Ukhina A.V., Kuvshinov G.G. // Russ. J. Appl. Chem. 2018. V. 91. № 11. P. 1874–1881. https://doi.org/10.1134/S1070427218110198
- Kurmashov P.B., Bannov A.G., Popov M.V., Brester A.E., Ukhina A.V., Ishenko A.V., Maksimovskii E.A., Tolsto-brova L.I., Chulkov A.O., Kuvshinov G.G. // Int. J. Energy Res. 2022. V. 46. № 9. P. 11957–11971. https://doi.org/10.1002/er.7964
- Kingsley J.J., Patil K.C. // Mater. Lett. 1988. V. 6. № 11–12. P. 427–432. https://doi.org/10.1016/0167-577X(88)90045-6
- Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. Mater. Synth. Process. 2002. V. 10. P. 135–141. https://doi.org/10.1023/A:1021986613158
- Popov M.V., Bannov A.G // AIP Conf. Proc. 2022. V. 2390. № 1. P. 020060. https://doi.org/10.1063/5.0070001
- Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Plyasova L.M. // J. Catal. 1999. V. 187. № 1. P. 77–84. https://doi.org/10.1006/jcat.1999.2562
- Kuvshinov G.G., Mogilnykh Yu.I., Kuvshinov D.G., Zaikovskii V.I., Avdeeva L.B. // Carbon. 1998. V. 36. № 1–2. P. 87–97. https://doi.org/10.1016/S0008-6223(97)00131-0
- Kuvshinov G.G., Popov M.V., Tonkodubov S.E., Kuvshinov G.G. // Russ. J. Appl. Chem. 2016. V. 89. № 11. P. 1777–1785. https://doi.org/10.1134/S1070427216110070
- Krutskii Yu.L., Bannov A.G., Sokolov V.V., Dykova K.D., Shinkarev V.V., Ukhina A.V., Maksimovskii E.A., Pichugin A.Yu., Solov’ev E.A., Krutskaya T.M., Kuvshinov G.G. // Nanotechnol. Russia. 2013. V. 8. № 3–4. P. 3212–3217. https://doi.org/10.1134/S1995078013020109
- Pichugin A.Yu., Maksimovskii E.A., Krutskaya T.M., Netskina O.V., Bataev I.A. // Ceram. Int. 2017. V. 43. № 3. P. 3212–3217. https://doi.org/10.1016/j.ceramint.2016.11.146
- Brester A.E., Golovakhin V.V., Novgorodtseva O.N., Lapekin N.I., Shestakov A.A., Ukhina A.V., Prosanov I.Yu., Maksimovskii E.A., Popov M.V., Bannov A.G. // Dokl. Chem. 2021. V. 501. № 2. P. 264–269. https://doi.org/10.1134/S0012500821120016
- Bannov A.G. Prášek J., Jašek O., Shibaev A.A., Zajíčková L. Gas sensing properties of carbon nanomaterials. In: Proc. of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, 18–22 May 2016. V. 2016. P. 449–451. https://doi.org/10.1109/ISSE.2016.7563238
- Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. P. 186. https://doi.org/10.3390/mi12020186
- Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Appl. Catal., B. 2009. V. 85. № 3–4. P. 180–191. https://doi.org/10.1016/j.apcatb.2008.07.011
- Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Carbon. 2010. V. 48. № 7. P. 2004–2012. https://doi.org/10.1016/j.carbon.2010.02.008
- Bannov A.G., Uvarov N.F., Shilovskaya S.M., Kuvshi-nov G.G. // Nanotechnol. Russia. 2012. V. 7. № 3–4. P. 169–177. https://doi.org/10.1134/S1995078012020048
- Dong Y., Ni Q., Li L., Fu Y. // Mater. Lett. 2014. V. 132. P. 206–209. https://doi.org/10.1016/j.matlet.2014.06.084
- Li Y., Li D., Wang G. // Catal. Today. 2011. V. 162. № 1. P. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042
- Hadian M., Marrevee D.P.F., Buist K.A., Reesink B.H., Bos R., Bavel A.P., Kuipers H.A.M. // Chem. Eng. Sci. 2022. V. 260. № 22. P. 117938. https://doi.org/10.1016/j.ces.2022.117938
- Roslyakov S.I., Kovalev D.Yu., Rogachev A.S., Manu-kyan H., Mukas’yan A.S. // Dokl. Phys. Chem. 2013. V. 449. № 1. P. 48–51. https://doi.org/10.1134/S0012501613030068
- Kachala V.V., Khemchyan L.L., Kashin A.S., Orlov N.V., Grachev A.A., Zalesskiy S.S., Ananikov V.P. // Russ. Chem. Rev. 2013. V. 82. № 7. P. 648–685. https://doi.org/10.1070/rc2013v082n07abeh004413
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					






