Formation conditions of the postcollisional granites of the Kara orogen (North Taimyr, Central Arctic): application of 3D numeric modeling
- Autores: Vernikovsky V.А.1,2, Semenov A.N.3,2, Polyansky O.P.3, Babichev A.V.3,2, Vernikovskaya A.E.1,2, Matushkin N.Y.1,2
- 
							Afiliações: 
							- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
 
- Edição: Volume 520, Nº 1 (2025)
- Páginas: 90-98
- Seção: PETROLOGY
- ##submission.dateSubmitted##: 03.06.2025
- ##submission.datePublished##: 30.05.2025
- URL: https://rjeid.com/2686-7397/article/view/682409
- DOI: https://doi.org/10.31857/S2686739725010097
- EDN: https://elibrary.ru/GWPJHV
- ID: 682409
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using 3D numerical modeling, we analyze the formation of postcollisional granitoids of the Kara orogen in Northern Taimyr under conditions of elevated heat flow due to the orogen’s breakup prior to its mantle plume episode (280–250 Ma). The initial geometry of the model area, the boundary conditions and physical properties for the crust and the mantle have been selected to reflect the structure of the crust in the junction zone of the Kara, Central Taimyr, and Siberian blocks. Comparing 2D and 3D modeling results with identical parameters and medium physical properties defined by the Rayleigh number shows that 3D modeling yields a more realistic and correct description of relevant magmatic processes. At the base of the modeled Earth crust at ~50 km an area of melting of continental crust appears, possibly with slight input of mantle component, which generates magma uplift and the formation of closely spaced granitoid intrusions. Plutons with diameters 10–20 km were emplaced at depths 14–8 km during 15 million years, which is close to the actual geological position of postcollisional stocks of the Kara orogen.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Vernikovsky
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                								
Academician of the RAS
Rússia, Novosibirsk; NovosibirskA. Semenov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
O. Polyansky
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
														Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Babichev
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
A. Vernikovskaya
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
N. Matushkin
Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
							Autor responsável pela correspondência
							Email: MatushkinNY@ipgg.sbras.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
Bibliografia
- Верниковский В. А. Геодинамическая эволюция Таймырской складчатой области // Труды ОИГГ М. Вып. 831. Новосибирск: Изд. СО РАН НИЦ ОИГГМ, 1996. 202 с.
- Vernikovsky V. A., Vernikovskaya A., Proskurnin V., Matushkin N., Proskurnina M., Kadilnikov P., Larionov A., Travin A. Late Paleozoic – Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events // Minerals. 2020. V. 10(6). 571. http://dx.doi.org/10.3390/min10060571
- Верниковский В. А., Полянский О. П., Бабичев А. В., Верниковская А. Е., Проскурнин В. Ф., Матушкин Н. Ю. Тектонотермальная модель для позднепалеозойского синколлизионного этапа формирования Карского орогена (Северный Таймыр, Центральная Арктика) // Геология и геофизика. 2022. Т. 63. № 4. С. 440–457. http://dx.doi.org/10.15372/GiG2021178
- Верниковский В. А., Семенов А. Н., Полянский О. П., Бабичев А. В., Верниковская А. Е., Матушкин Н. Ю. Тектонотермальная модель и эволюция магматизма на постколлизионном (предплюмовом) этапе развития Карского орогена (Северный Таймыр, Центральная Арктика) // Доклады РАН. Науки о Земле. 2024. Т. 514. № 1. С. 56–64. https://doi.org/10.31857/S2686739724010077
- Проскурнина М. А., Проскурнин В. Ф., Ремизов Д. Н., Ларионов А. Н. Кольцевые интрузивы Беспамятнинского ареала: проявления шошонит-латитового магматизма на Северном Таймыре // Региональная геология и металлогения. 2019. № 79. С. 5–22.
- Khudoley A. K., Verzhbitsky V. E., Zastrozhnov D. A., O’Sullivan P., Ershova V. B., Proskurnin V. F., Tuchkova M. I., Rogov M. A., Kyser T. K., Malyshev S. V., Schneider G. V. Late Paleozoic—Mesozoic tectonic evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression // J. Geodyn. 2018. V. 119. P. 221–241. https://doi.org/10.1016/j.jog.2018.02.002
- Sobolev S. V., Sobolev A. V., Kuzmin D. V., Krivolutskaya N. A., Petrunin A. G., Arndt N. T., Radko V. A., Vasiliev Y. R. Linking mantle plumes, large igneous provinces and environmental catastrophes // Nature. 2011. V. 477. P. 312–316. https://doi.org/10.1038/nature10385
- Jamieson R. A., Beaumont C. On the origin of orogens // GSA Bull. 2013. V. 125(11–12). P. 1671–1702. https://doi.org/10.1130/B30855.1
- Полянский О. П., Филиппов Ю. Ф., Фомин А. Н., Федорович М. О., Ревердатто В. В. Реконструкция динамики погружения и палеотемпературного режима северной окраины Сибирской платформы // Геология и геофизика. 2025. Т. 66. № 1. С. 90–108. https://doi.org/10.15372/GiG2024145
- Priestley K., McKenzie D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle // Earth Planet. Sci. Lett. 2013. V. 381. P. 78–91. https://doi.org/10.1016/j.epsl.2013.08.022
- Семенов А. Н., Полянский О. П. Численное моделирование механизмов минглинга и миксинга магмы на примере формирования сложных интрузивов // Геология и геофизика. 2017. Т. 58. № 11. С. 1665–1683. https://doi.org/10.15372/GiG20171104
- Lee J. R. On the three-dimensional effect for natural convection in horizontal enclosure with an adiabatic body: Review from the 2D results and visualization of 3D flow structure // Int. Comm. Heat and Mass Transfer. 2018. V. 92. P. 31‒38. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.010
- Janssen R. J. A., Henkes R. A. W. M. Instabilities in three‐dimensional differentially heated cavities with adiabatic horizontal walls // Physics of Fluids. 1996. V. 8(1). P. 62–74. https://doi.org/10.1063/1.868814
- Astanina M. S., Buonomo B., Manca O., Sheremet M. A. Three-dimensional natural convection of fluid with temperature-dependent viscosity within a porous cube having local heater // Int. Comm. Heat and Mass Transfer. 2022. V. 139. 106510. https://doi.org/10.1016/j.icheatmasstransfer.2022.106510
- Zhu W., Wang M., Chen H. 2D and 3D lattice Boltzmann simulation for natural convection melting // Int. J. Thermal Sci. 2017. V. 117. P. 239–250. https://doi.org/10.1016/j.ijthermalsci.2017.03.025
- Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд. Гео, 2001. 409 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




