A Computational Approach for Designing and Validating Small Interfering RNA against SARS-CoV-2 Variants


Cite item

Full Text

Abstract

Aims:The aim of this study is to develop a novel antiviral strategy capable of efficiently targeting a broad set of SARS-CoV-2 variants.

Background:Since the first emergence of SARS-CoV-2, it has rapidly transformed into a global pandemic, posing an unprecedented threat to public health. SARS-CoV-2 is prone to mutation and continues to evolve, leading to the emergence of new variants capable of escaping immune protection achieved due to previous SARS-CoV-2 infections or by vaccination.

Objective:RNA interference (RNAi) is a remarkable biological mechanism that can induce gene silencing by targeting complementary mRNA and inhibiting its translation.

Method:In this study, using the computational approach, we predicted the most efficient siRNA capable of inhibiting SARS-CoV-2 variants of concern (VoCs).

Result:The presented siRNA was characterized and evaluated for its thermodynamic properties, offsite-target hits, and in silico validation by molecular docking and molecular dynamics simulations (MD) with Human AGO2 protein

Conclusion:The study contributes to the possibility of designing and developing an effective response strategy against existing variants of concerns and preventing further.

About the authors

Kishore Dhotre

Division of Virology, ICMR-National AIDS Research Institute

Email: info@benthamscience.net

Debashree Dass

Division of Virology, ICMR-National AIDS Research Institute

Email: info@benthamscience.net

Anwesha Banerjee

Division of Virology, ICMR-National AIDS Research Institute

Email: info@benthamscience.net

Vijay Nema

Division of Molecular Biology, ICMR-National AIDS Research Institute

Email: info@benthamscience.net

Anupam Mukherjee

Division of Virology, ICMR-National AIDS Research Institute

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  2. Adil, M.T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-Taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J., 2021, 97(1144), 110-116. doi: 10.1136/postgradmedj-2020-138386 PMID: 32788312
  3. WHO. WHO Coronavirus (COVID-19) Dashboard. 2023. Available From: https://covid19.who.int/
  4. Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 2021, 13(2), 202. doi: 10.3390/v13020202 PMID: 33572857
  5. Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in china. N. Engl. J. Med., 2020, 382(18), 1708-1720. doi: 10.1056/NEJMoa2002032 PMID: 32109013
  6. Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china. JAMA, 2020, 323(13), 1239-1242. doi: 10.1001/jama.2020.2648 PMID: 32091533
  7. Brian, D.A.; Baric, R.S. Coronavirus genome structure and replication. Coronavirus Replication and Reverse Genetics; Enjuanes, L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005, Vol. 287, pp. 1-30. doi: 10.1007/3-540-26765-4_1
  8. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  9. Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023. doi: 10.1093/nsr/nwaa036 PMID: 34676127
  10. Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 2021, 596(7873), 495-504. doi: 10.1038/s41586-021-03792-w PMID: 34237771
  11. Cele, S.; Gazy, I.; Jackson, L.; Hwa, S.H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pillay, S.; Wilkinson, E.; Naidoo, Y.; Karim, F.; Ganga, Y.; Khan, K.; Bernstein, M.; Balazs, A.B.; Gosnell, B.I.; Hanekom, W.; Moosa, M.Y.S.; Lessells, R.J.; de Oliveira, T.; Sigal, A. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature, 2021, 593(7857), 142-146. doi: 10.1038/s41586-021-03471-w PMID: 33780970
  12. Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese-western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med., 2020, 48(3), 737-762. doi: 10.1142/S0192415X20500378 PMID: 32164424
  13. Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; Pandey, R.; Brown, J.; Zhou, J.; Goonawardane, N.; Mishra, S.; Whittaker, C.; Mellan, T.; Marwal, R.; Datta, M.; Sengupta, S.; Ponnusamy, K.; Radhakrishnan, V.S.; Abdullahi, A.; Charles, O.; Chattopadhyay, P.; Devi, P.; Caputo, D.; Peacock, T.; Wattal, C.; Goel, N.; Satwik, A.; Vaishya, R.; Agarwal, M.; Chauhan, H.; Dikid, T.; Gogia, H.; Lall, H.; Verma, K.; Dhar, M.S.; Singh, M.K.; Soni, N.; Meena, N.; Madan, P.; Singh, P.; Sharma, R.; Sharma, R.; Kabra, S.; Kumar, S.; Kumari, S.; Sharma, U.; Chaudhary, U.; Sivasubbu, S.; Scaria, V.; Oberoi, J.K.; Raveendran, R.; Datta, S.; Das, S.; Maitra, A.; Chinnaswamy, S.; Biswas, N.K.; Parida, A.; Raghav, S.K.; Prasad, P.; Sarin, A.; Mayor, S.; Ramakrishnan, U.; Palakodeti, D.; Seshasayee, A.S.N.; Thangaraj, K.; Bashyam, M.D.; Dalal, A.; Bhat, M.; Shouche, Y.; Pillai, A.; Abraham, P.; Potdar, V.A.; Cherian, S.S.; Desai, A.S.; Pattabiraman, C.; Manjunatha, M.V.; Mani, R.S.; Udupi, G.A.; Nandicoori, V.; Tallapaka, K.B.; Sowpati, D.T.; Kawabata, R.; Morizako, N.; Sadamasu, K.; Asakura, H.; Nagashima, M.; Yoshimura, K.; Ito, J.; Kimura, I.; Uriu, K.; Kosugi, Y.; Suganami, M.; Oide, A.; Yokoyama, M.; Chiba, M.; Saito, A.; Butlertanaka, E.P.; Tanaka, Y.L.; Ikeda, T.; Motozono, C.; Nasser, H.; Shimizu, R.; Yuan, Y.; Kitazato, K.; Hasebe, H.; Nakagawa, S.; Wu, J.; Takahashi, M.; Fukuhara, T.; Shimizu, K.; Tsushima, K.; Kubo, H.; Shirakawa, K.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Takaori-Kondo, A.; Tokunaga, K.; Ozono, S.; Baker, S.; Dougan, G.; Hess, C.; Kingston, N.; Lehner, P.J.; Lyons, P.A.; Matheson, N.J.; Owehand, W.H.; Saunders, C.; Summers, C.; Thaventhiran, J.E.D.; Toshner, M.; Weekes, M.P.; Maxwell, P.; Shaw, A.; Bucke, A.; Calder, J.; Canna, L.; Domingo, J.; Elmer, A.; Fuller, S.; Harris, J.; Hewitt, S.; Kennet, J.; Jose, S.; Kourampa, J.; Meadows, A.; O’Brien, C.; Price, J.; Publico, C.; Rastall, R.; Ribeiro, C.; Rowlands, J.; Ruffolo, V.; Tordesillas, H.; Bullman, B.; Dunmore, B.J.; Fawke, S.; Gräf, S.; Hodgson, J.; Huang, C.; Hunter, K.; Jones, E.; Legchenko, E.; Matara, C.; Martin, J.; Mescia, F.; O’Donnell, C.; Pointon, L.; Pond, N.; Shih, J.; Sutcliffe, R.; Tilly, T.; Treacy, C.; Tong, Z.; Wood, J.; Wylot, M.; Bergamaschi, L.; Betancourt, A.; Bower, G.; Cossetti, C.; De Sa, A.; Epping, M.; Fawke, S.; Gleadall, N.; Grenfell, R.; Hinch, A.; Huhn, O.; Jackson, S.; Jarvis, I.; Krishna, B.; Lewis, D.; Marsden, J.; Nice, F.; Okecha, G.; Omarjee, O.; Perera, M.; Potts, M.; Richoz, N.; Romashova, V.; Yarkoni, N.S.; Sharma, R.; Stefanucci, L.; Stephens, J.; Strezlecki, M.; Turner, L.; De Bie, E.M.D.D.; Bunclark, K.; Josipovic, M.; Mackay, M.; Rossi, S.; Selvan, M.; Spencer, S.; Yong, C.; Allison, J.; Butcher, H.; Caputo, D.; Clapham-Riley, D.; Dewhurst, E.; Furlong, A.; Graves, B.; Gray, J.; Ivers, T.; Kasanicki, M.; Le Gresley, E.; Linger, R.; Meloy, S.; Muldoon, F.; Ovington, N.; Papadia, S.; Phelan, I.; Stark, H.; Stirrups, K.E.; Townsend, P.; Walker, N.; Webster, J.; Scholtes, I.; Hein, S.; King, R.; Mavousian, A.; Lee, J.H.; Bassi, J.; Silacci-Fegni, C.; Saliba, C.; Pinto, D.; Irie, T.; Yoshida, I.; Hamilton, W.L.; Sato, K.; Bhatt, S.; Flaxman, S.; James, L.C.; Corti, D.; Piccoli, L.; Barclay, W.S.; Rakshit, P.; Agrawal, A.; Gupta, R.K. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599(7883), 114-119. doi: 10.1038/s41586-021-03944-y PMID: 34488225
  14. Naveca, F.G.; Nascimento, V.; de Souza, V.C.; Corado, A.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; Brandão, M.J.; Jesus, M.; Gonçalves, L.; da Costa, C.F.; Sampaio, V.; Barros, D.; Silva, M.; Mattos, T.; Pontes, G.; Abdalla, L.; Santos, J.H.; Arantes, I.; Dezordi, F.Z.; Siqueira, M.M.; Wallau, G.L.; Resende, P.C.; Delatorre, E.; Gräf, T.; Bello, G. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med., 2021, 27(7), 1230-1238. doi: 10.1038/s41591-021-01378-7 PMID: 34035535
  15. Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Ødeskaug, L.E.; Hagen, F.; Hanch-Hansen, K.E.; Lind, A.; Watle, S.V.; Taxt, A.M.; Johansen, M.; Vold, L.; Aavitsland, P.; Nygård, K.; Madslien, E.H. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill., 2021, 26(50), 2101147. doi: 10.2807/1560-7917.ES.2021.26.50.2101147 PMID: 34915975
  16. Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151. doi: 10.3389/fmicb.2018.02151 PMID: 30254624
  17. Müller, M.; Fazi, F.; Ciaudo, C. Argonaute proteins: From structure to function in development and pathological cell fate determination. Front. Cell Dev. Biol., 2020, 7, 360. doi: 10.3389/fcell.2019.00360 PMID: 32039195
  18. Elkayam, E.; Kuhn, C.D.; Tocilj, A.; Haase, A.D.; Greene, E.M.; Hannon, G.J.; Joshua-Tor, L. The structure of human argonaute-2 in complex with miR-20a. Cell, 2012, 150(1), 100-110. doi: 10.1016/j.cell.2012.05.017 PMID: 22682761
  19. Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; Zhou, L.; Larson, C.N.; Dietrich, J.; Klem, E.B.; Scheuermann, R.H. ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res., 2012, 40(D1), D593-D598. doi: 10.1093/nar/gkr859 PMID: 22006842
  20. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform., 2019, 20(4), 1160-1166. doi: 10.1093/bib/bbx108 PMID: 28968734
  21. Amarzguioui, M.; Prydz, H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun., 2004, 316(4), 1050-1058. doi: 10.1016/j.bbrc.2004.02.157 PMID: 15044091
  22. Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W.S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol., 2004, 22(3), 326-330. doi: 10.1038/nbt936 PMID: 14758366
  23. Ui-Tei, K.; Naito, Y.; Takahashi, F.; Haraguchi, T.; Ohki-Hamazaki, H.; Juni, A.; Ueda, R.; Saigo, K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res., 2004, 32(3), 936-948. doi: 10.1093/nar/gkh247 PMID: 14769950
  24. Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res., 2007, 35(Web Server), W43-W46. doi: 10.1093/nar/gkm234 PMID: 17452344
  25. Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res., 2013, 41(W1), W471-W474. doi: 10.1093/nar/gkt290 PMID: 23620284
  26. Markham, N.R.; Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res., 2005, 33(Web Server), W577-W581. doi: 10.1093/nar/gki591 PMID: 15980540
  27. Meister, G.; Landthaler, M.; Patkaniowska, A.; Dorsett, Y.; Teng, G.; Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell, 2004, 15(2), 185-197. doi: 10.1016/j.molcel.2004.07.007 PMID: 15260970
  28. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303. doi: 10.1093/nar/gky427 PMID: 29788355
  29. Schirle, N.T.; Sheu-Gruttadauria, J.; Chandradoss, S.D.; Joo, C.; MacRae, I.J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife, 2015, 4, e07646. doi: 10.7554/eLife.07646 PMID: 26359634
  30. Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res., 2013, 41(W1), W384-W388. doi: 10.1093/nar/gkt458 PMID: 23737448
  31. Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410. doi: 10.1093/nar/gkm290 PMID: 17517781
  32. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415. doi: 10.1093/nar/gkg595 PMID: 12824337
  33. Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res., 2012, 40(14), e112-e112. doi: 10.1093/nar/gks339 PMID: 22539264
  34. Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 2017, 45(W1), W365-W373. doi: 10.1093/nar/gkx407 PMID: 28521030
  35. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
  36. Auweter, S.D.; Fasan, R.; Reymond, L.; Underwood, J.G.; Black, D.L.; Pitsch, S.; Allain, F.H.T. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J., 2006, 25(1), 163-173. doi: 10.1038/sj.emboj.7600918 PMID: 16362037
  37. Kalra, K.; Gorle, S.; Cavallo, L.; Oliva, R.; Chawla, M. Occurrence and stability of lone pair-π and OH–π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res., 2020, 48(11), 5825-5838. doi: 10.1093/nar/gkaa345 PMID: 32392301
  38. Corley, M.; Burns, M.C.; Yeo, G.W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell, 2020, 78(1), 9-29. doi: 10.1016/j.molcel.2020.03.011 PMID: 32243832
  39. Kumar, S.; Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem, 2002, 3(7), 604-617. doi: 10.1002/1439-7633(20020703)3:73.0.CO;2-X PMID: 12324994
  40. Tolstorukov, M.Y.; Jernigan, R.L.; Zhurkin, V.B. Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol., 2004, 337(1), 65-76. doi: 10.1016/j.jmb.2004.01.011 PMID: 15001352
  41. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718. doi: 10.1002/jcc.20291 PMID: 16211538
  42. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012. doi: 10.1002/jcc.10349 PMID: 14531054
  43. Shawan, M.M.A.K.; Sharma, A.R.; Bhattacharya, M.; Mallik, B.; Akhter, F.; Shakil, M.S.; Hossain, M.M.; Banik, S.; Lee, S.S.; Hasan, M.A.; Chakraborty, C. Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infect. Genet. Evol., 2021, 93, 104951. doi: 10.1016/j.meegid.2021.104951 PMID: 34089909
  44. Amiri, A.; Barreto, G.; Sathyapalan, T.; Sahebkar, A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr. Neuropharmacol., 2021, 19(11), 1896-1911. doi: 10.2174/1570159X19666210402104054
  45. Beniac, D.R.; Andonov, A.; Grudeski, E.; Booth, T.F. Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol., 2006, 13(8), 751-752. doi: 10.1038/nsmb1123 PMID: 16845391
  46. Delmas, B.; Laude, H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol., 1990, 64(11), 5367-5375. doi: 10.1128/jvi.64.11.5367-5375.1990 PMID: 2170676
  47. Bhattacharya, M.; Chatterjee, S.; Sharma, A.R.; Agoramoorthy, G.; Chakraborty, C. D614G mutation and SARS-CoV-2: Impact on S-protein structure, function, infectivity, and immunity. Appl. Microbiol. Biotechnol., 2021, 105(24), 9035-9045. doi: 10.1007/s00253-021-11676-2 PMID: 34755213
  48. Naito, Y.; Yoshimura, J.; Morishita, S.; Ui-Tei, K. siDirect 2.0: Updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics, 2009, 10(1), 392. doi: 10.1186/1471-2105-10-392 PMID: 19948054
  49. Brechin, V.; Shinohara, F.; Saito, J.; Seitz, H.; Tomari, Y. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5′ end of the siRNA guide strand. RNA, 2021, 27(2), 151-162. doi: 10.1261/rna.073775.119 PMID: 33177187
  50. Boland, A.; Tritschler, F.; Heimstädt, S.; Izaurralde, E.; Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep., 2010, 11(7), 522-527. doi: 10.1038/embor.2010.81 PMID: 20539312
  51. Kandeel, M.; Kitade, Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLoS One, 2013, 8(2), e57140. doi: 10.1371/journal.pone.0057140 PMID: 23441235
  52. Chowdhury, U.F.; Sharif Shohan, M.U.; Hoque, K.I.; Beg, M.A.; Sharif Siam, M.K.; Moni, M.A. A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2. Genomics, 2021, 113(1), 331-343. doi: 10.1016/j.ygeno.2020.12.021 PMID: 33321203
  53. Shi, H.; Ullu, E.; Tschudi, C. Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J. Biol. Chem., 2004, 279(48), 49889-49893. doi: 10.1074/jbc.M409280200 PMID: 15383544
  54. Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13, 48-57. doi: 10.59566/IJBS.2017.13048
  55. Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev., 2020, 154-155, 64-78. doi: 10.1016/j.addr.2020.07.022 PMID: 32768564
  56. de Paula Brandão, P.R.; Titze-de-Almeida, S.S.; Titze-de-Almeida, R. Leading RNA interference therapeutics part 2: Silencing Delta-Aminolevulinic Acid Synthase 1, with a Focus on Givosiran. Mol. Diagn. Ther., 2020, 24(1), 61-68. doi: 10.1007/s40291-019-00438-6 PMID: 31792921
  57. Hoy, S.M. Patisiran: First global approval. Drugs, 2018, 78(15), 1625-1631. doi: 10.1007/s40265-018-0983-6 PMID: 30251172

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers