Rotating Magnetic Gravitational Trap for Storing Ultracold Neutrons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper proposes an experiment to measure the neutron lifetime by storing ultracold neutrons in a rotating magnetic trap. The magnetic trap is a set of NdFeB permanent magnets. By rotating the trap around a horizontal axis, it is possible to carry out gravitational capture of ultracold neutrons and their holding. A design option is presented when two traps are located in one installation on the same axis: material and magnetic. The sensitivity of the magnetic trap was assessed in comparison with the material one under equal measurement conditions. One of the factors influencing the systematic error of the experiment will be the process of neutron depolarization in a magnetic field. Therefore, the paper considers the issue of developing a magnetic system that minimizes the probability of neutron depolarization. The so-called turbine effect is also considered, which can manifest itself in a change in the energy of ultracold neutrons during rotation due to interaction with the flat faces of the trap. The proposed gravitational capture of ultracold neutrons in a magnetic trap is a fundamentally new approach that has never been implemented before. The experiment can be carried out on the ultracold neutron source under construction at the PIK reactor.

作者简介

A. Serebrov

National Research Centre “Kurchatov Institute” — Petersburg Institute of Nuclear Research

编辑信件的主要联系方式.
Email: serebrov_ap@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300

A. Fomin

National Research Centre “Kurchatov Institute” — Petersburg Institute of Nuclear Research

Email: serebrov_ap@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300

G. Klyushnikov

National Research Centre “Kurchatov Institute” — Petersburg Institute of Nuclear Research

Email: serebrov_ap@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300

A. Koptyukhov

National Research Centre “Kurchatov Institute” — Petersburg Institute of Nuclear Research

Email: serebrov_ap@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300

A. Murashkin

National Research Centre “Kurchatov Institute” — Petersburg Institute of Nuclear Research

Email: serebrov_ap@pnpi.nrcki.ru
俄罗斯联邦, Gatchina, 188300

参考

  1. Serebrov A.P., Fomin A.K. // Physics Procedia. 2011. V. 17. P. 199. https://doi.org/10.1016/j.phpro.2011.06.037
  2. Serebrov A.P. // Physics-Uspekhi. 2019. V. 62. P. 596. https://doi.org/10.3367/UFNe.2018.11.038475
  3. Workman R.L., Burkert V.D., Crede V., Klempt E., Thoma U., Tiator L., Agashe K., Aielli G., Allanach B.C., Amsler C., Antonelli M., Aschenauer E.C., Asner D.M., Baer H., Banerjee S., Barnett R.M., Baudis L., Bauer C.W., Beatty J.J., Belousov V.I., Beringer J., Bettini A., Biebel O. et al // Prog. Theor. Exp. Phys. 2022. V. 2022. P. 083C01. https://doi.org/10.1093/ptep/ptac097
  4. Serebrov A., Varlamov V., Kharitonov A., Fomin A., Pokotilovski Yu., Geltenbort P., Butterworth J., Krasnoschekova I., Lasakov M., Tal’daev R., Vassiljev A., Zherebtsov O. // Phys. Lett. B. 2005. V. 605. P. 72. https://doi.org/10.1016/j.physletb.2004.11.013
  5. Serebrov A.P., Varlamov V.E., Kharitonov A.G., Fomin A.K., Pokotilovski Yu.N., Geltenbort P., Krasnoschekova I.A., Lasakov M.S., Taldaev R.R., Vassiljev A.V., Zherebtsov O.M. // Phys. Rev. C. 2008. V. 78. P. 035505. https://doi.org/10.1103/PhysRevC.78.035505
  6. Serebrov A.P., Kolomensky E.A., Fomin A.K., Krasnoshchekova I.A., Vassiljev A.V., Prudnikov D.M., Shoka I.V., Chechkin A.V., Chaikovskiy M.E., Varlamov V.E., Ivanov S.N., Pirozhkov A.N., Geltenbort P., Zimmer O., Jenke T., Van der Grinten M., Tucker M. // JETP Lett. 2017. V. 106. P. 623. https://doi.org/10.1134/S0021364017220143
  7. Serebrov A.P., Kolomensky E.A., Fomin A.K., Krasnoshchekova I.A., Vassiljev A.V., Prudnikov D.M., Shoka I.V., Chechkin A.V., Chaikovskiy M.E., Varlamov V.E., Ivanov S.N., Pirozhkov A.N., Geltenbort P., Zimmer O., Jenke T., Van der Grinten M., Tucker M. // Phys. Rev. C. 2018. V. 97. P. 055503. https://doi.org/10.1103/PhysRevC.97.055503
  8. Ezhov V.F., Bazarov B.A., Geltenbort P., Kovrizhnykh N.A., Krygin G.B., Ryabov V.L., Serebrov A.P. // Tech. Phys. Lett. 2001. V. 27. P. 1055. https://doi.org/10.1134/1.1432348
  9. Ezhov V.F., Andreev A.Z., Glushkov A.A., Glushkov A.G., Groshev M.N., Knyazkov V.A., Krygin G.B., Ryabov V.L., Serebrov A.P., Bazarov B.A., Geltenbort P., Hartman F.J., Paul S., Picker R., Zimmer O., Kovrizhnykh N.A. // J. Res. Natl. Inst. Stand. Technol. 2005. V. 110. P. 345. https://doi.org/10.6028/jres.110.051
  10. Ezhov V.F., Andreev A.Z., Ban G., Bazarov B.A., Geltenbort P., Hartman F.J., Glushkov A.G., Groshev M.G., Knyazkov V.A., Kovrizhnykh N.A., Naviliat-Cuncic O., Krygin G.B., Mueller A., Paul S., Picker R., Ryabov V.L., Serebrov A., Zimmer O. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 611. P. 167. https://doi.org/10.1016/j.nima.2009.07.071
  11. Ezhov V.F., Andreev A.Z., Ban G., Bazarov B.A., Geltenbort P., Glushkov A.G., Knyazkov V.A., Kovrizhnykh N.A., Krygin G.B., Naviliat-Cuncic O., Ryabov V.L. // JETP Lett. 2018. V. 107. P. 671. https://doi.org/10.1134/S0021364018110024
  12. Walstrom P.L., Bowman J.D., Penttila S.I., Morris C., Saunders A. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 599. P. 82. https://doi.org/10.1016/j.nima.2008.11.010
  13. Salvat D.J., Adamek E.R., Barlow D., Bowman J.D., Broussard L.J., Callahan N.B., Clayton S.M., Cude-Woods C., Currie S., Dees E.B., Fox W., Geltenbort P., Hickerson K.P., Holley A.T., Liu C.-Y., Makela M., Medina J., Morley D.J., Morris C.L., Penttila S.I., Ramsey J., Saunders A., Seestrom S.J., Sharapov E.I., Sjue S.K.L., Slaughter B.A., Vanderwerp J., VornDick B., Walstrom P.L., Wang Z., Womack T.L., Young A.R. // Phys. Rev. C. 2014. V. 89. P. 052501. https://doi.org/10.1103/PhysRevC.89.052501
  14. Pattie R.W., Callahan N.B., Cude-Woods C., Adamek E.R., Broussard L.J., Clayton S.M., Currie S.A., Dees E.B., Ding X., Engel E.M., Fellers D.E., Fox W., Geltenbort P., Hickerson K.P., Hoffbauer M.A., Holley A.T., Komives A., Liu C.-Y., MacDonald S.W.T., Makela M., Morris C.L., Ortiz J.D., Ramsey J., Salvat D.J., Saunders A., Seestrom S.J., Sharapov E.I., Sjue S.K., Tang Z., Vanderwerp J., Vogelaar B., Walstrom P.L., Wang Z., Wei W., Weaver H.L., Wexler J.W., Womack T.L., Young A.R., Zeck B.A. // Science. 2018. V. 360. P. 627. https://doi.org/10.1126/science.aan8895
  15. Gonzalez F.M., Fries E.M., Cude-Woods C., Bailey T., Blatnik M., Broussard L.J., Callahan N.B., Choi J.H., Clayton S.M., Currie S.A., Dawid M., Dees E.B., Filippone B.W., Fox W., Geltenbort P., George E., Hayen L., Hickerson K.P., Hoffbauer M.A., Hoffman K., Holley A.T., Ito T.M., Komives A., Liu C.-Y., Makela M., Morris C.L., Musedinovic R., O’Shaughnessy C., Pattie R.W., Jr., Ramsey J., Salvat D.J., Saunders V, Sharapov E.I., Slutsky S., Su V., Sun X., Swank C., Tang Z., Uhrich W., Vanderwerp J., Walstrom P., Wang Z., Wei W., Young A.R. // Phys. Rev. Lett. 2021. V. 127. P. 162501. https://doi.org/10.1103/PhysRevLett.127.162501
  16. Serebrov A.P., Fomin A.K., Kharitonov A.G., Varlamov V.E., Chechkin A.V. // Tech. Phys. 2013. V. 58. P. 1681. https://doi.org/10.1134/S1063784213110224
  17. Klyushnikov G.N., Serebrov A.P. // JETP. 2023. V. 137. P. 316. https://doi.org/10.1134/S1063776123090054
  18. Kovalchuk M.V., Voronin V.V., Grigoriev S.V., Serebrov A.P. // Cryst. Rep. 2021. V. 66. P. 195. https://doi.org/10.1134/S1063774521020061
  19. Fomin A.K., Serebrov A.P. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16. P. 1012. https://doi.org/10.1134/S1027451022060088
  20. Materne S., Picker R., Altarev I., Angerer H., Franke B., Gutsmiedl E., Hartmann F.J., Müller A.R., Paul S., Stoepler R. // Nucl. Instrum. Methods. Phys. Res. A. 2009. V. 611. P. 176. https://doi.org/10.1016/j.nima.2009.07.055
  21. Leung K.K.H., Geltenbort P., Ivanov S., Rosenau F., Zimmer O. // Phys. Rev. C. 2016. V. 94. P. 045502. https://doi.org/10.1103/PhysRevC.94.045502
  22. Bazarov B.A., Ezhov V.F., Kovrizhnykh N.A., Ryabov V.L., Andreev A.Z., Glushkov A.G., Knyaz’kov V.A., Krygin G.B. // Tech. Phys. Lett. 2016. V. 42. P. 663. https://doi.org/10.1134/S1063785016070038
  23. Roß K.U., Towards a High Precision Measurement of the Free Neutron Lifetime with tauSPECT. Ph.D. thesis, Mainz: Johannes Gutenberg Universität. 2021. http://doi.org/10.25358/openscience-6540

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024