Structure of surface steps in the deformed Zr62Cu22Fe6Al10 amorphous alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure of the side surfaces of the bulk Zr62Cu22Fe6Al10 amorphous sample after compressive deformation at room temperature was studied using X-ray diffraction and scanning electron microscopy methods. After preparation, the samples of the amorphous alloy had a square cross-section of 5 × 5 mm and a length of 40 mm. Examining the side surface allows one to avoid influencing the surface structure of the tool used for deformation. Plastic deformation of amorphous alloys occurs through the formation and propagation of shear bands. During compressive deformation at room temperature, a system of steps was formed on the end surfaces of the sample, caused by shear bands coming to the surface. Steps on surfaces have different sizes (thickness and height). It has been established that the structure of large steps is complex: they consist of elementary steps 15–30 nm thick. The local deformation was estimated based on the size of the steps. The formation of a small number of nanocrystals during deformation was discovered. The nanocrystals are approximately 10 nm in size. The results obtained open a new direction for research into the structure of deformed amorphous alloys and nanocrystallization processes under the influence of deformation.

作者简介

G. Abrosimova

Osipyan Institute of Solid State Physics RAS

Email: aronin@issp.ac.ru
俄罗斯联邦, Chernogolovka

N. Volkov

Osipyan Institute of Solid State Physics RAS

Email: aronin@issp.ac.ru
俄罗斯联邦, Chernogolovka

А. Aronin

Osipyan Institute of Solid State Physics RAS

编辑信件的主要联系方式.
Email: aronin@issp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Greer A.L., Cheng Y.Q., Ma, E. // Mater. Sci. Eng. R Rep. 2013. V. 74. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  2. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater.2005. V. 53. P. 823. https://www.doi.org/10.1016/j.scriptamat.2005.06.004
  3. Ma G.Z., Song K.K., Sun B.A., Yan Z.J., Kühn U., Chen D., Eckert J. // J. Mater. Sci.2013. V. 48. P.6825. https://www.doi.org/10.1007/s10853-013-7488-1.
  4. Maaß R., Löffler J.F. // Adv. Funct. Materials.2015. V. 25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  5. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert, J. // Scr. Mater.2020. V. 178. P. 57. https://www.doi.org/10.1016/j.scriptamat.2019.11.006
  6. Hebert R.J., Boucharat N., Perepezko J.H., Rösner H., Wilde G. // J. Alloys Compd. 2007. V. 434-435. P. 18. https://www.doi.org/10.1016/j.jallcom.2006.08.134
  7. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  8. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://www.doi.org/10.1016/j.actamat.2021.116785
  9. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. P. 251904. https://doi.org/10.1063/1.3602315
  10. Kang S.J., Cao Q.P., Liu J., Tang Y., Wang X.D., Zhang D.X., Ahn I. S., Caron A., Jiang J.Z. // J. Alloys Compd. 2019. V. 795. P. 493. https://doi.org/10.1016/j.jallcom.2019.05.026
  11. Abrosimova G., Aronin A., Barkalov O., Matveev D., Rybchenko O., Maslov V., Tkatch V. // Phys. Solid State. 2011. V. 53. P. 229. https://www.doi.org/10.1134/S1063783411020028
  12. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  13. Chen N., Frank R., Asao N., Louzguine-Luzgin D.V., Sharma P., Wang J.Q., Xie G.Q., Ishikawa Y., Hatakeyama N., Lin Y.C. // Acta Mater.2011. V. 59. P. 6433. https://www.doi.org/10.1016/j.actamat.2011.07.007.
  14. Pan J., Chen Q., Liu L., Li Y. // Acta Mater.2011. V. 59. P. 5146. https://www.doi.org/10.1016/j.actamat.2011.04.047.
  15. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater.2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  16. Maaß R., Löffler J.F. // Adv. Funct. Materials2015. V.25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  17. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
  18. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A. L. // Sci. Rep. 2016. V. 6. P.25832. https://www.doi.org/10.1038/srep25832.
  19. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 577. P. 121279. https://www.doi.org/10.1016/j.jnoncrysol.2021.121279
  20. Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://www.doi.org/10.1016/j.matlet.2023.134478
  21. Aronin A.S., Volkov N.A., Pershina E.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V.18. P. 27. https://www.doi.org/10.1134/S1027451024010051
  22. Абросимова Г.Е., Аронин А.С., Холстинина Н.Н. // ФТТ. 2010. Т. 52. Р. 417.
  23. Glezer А.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogozhev Y.S. // Mater. Lett. 2019. V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.12663
  24. Abrosimova G., Aksenov O., Volkov N., Matveev D., Pershina E., Aronin A. // Metals. 2024 V. 14. P. 771. https://doi.org/0.3390/met14070771

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024