Modeling of silicon irradiation with C60 ions and the role of the interaction potential

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Molecular dynamic simulation was used to study the processes of impact of 2–14 keV C60 molecular ions on the Si(100) surface at temperatures of 0–1000 K. Tersoff–ZBL and Airebo interaction potentials were used and the electronic energy loss of fast particles was taken into account. It is shown that when simulating single impact events, the target temperature does not affect the development of the displacement cascade, but affects its thermalization and the formation of the crater on the surface. As the energy increases, the carbon penetration depth, the size of the formed crater and the rim increase. The sputtering coefficient of silicon atoms in this case increases linearly with energy, and in the case of carbon atoms it reaches a steady-state value at 10 keV. Using the Tersoff potential gives a larger number of atomized carbon atoms for single impact events compared to Airebo potential. During cumulative events, the formation of an etch pit is observed at the initial stage, followed by the carbon film growth. In contrast to single events, the use of the Airebo potential in the case of cumulative ion accumulation gives a higher sputtering coefficient than the Tersoff potential. The formation of carbide bonds in the crystal and an increase in their concentration with ion fluence slightly reduces the number of sputtered particles. Therefore, for correct comparison of simulation results with experiment, it is not enough to use the results of the analysis of single impact event. It is necessary to perform the simulation of the cumulative fluence accumulation.

Texto integral

Acesso é fechado

Sobre autores

K. Karasev

Alferov University; Peter the Great Saint-Petersburg Polytechnic university

Autor responsável pela correspondência
Email: kir.karasyov2017@yandex.ru
Rússia, 195251, Saint-Petersburg; 195251, Saint-Petersburg

D. Strizhkin

Peter the Great Saint-Petersburg Polytechnic university

Email: kir.karasyov2017@yandex.ru
Rússia, 195251, Saint-Petersburg

A. Titov

Peter the Great Saint-Petersburg Polytechnic university

Email: kir.karasyov2017@yandex.ru
Rússia, 195251, Saint-Petersburg

P. Karaseov

Peter the Great Saint-Petersburg Polytechnic university

Email: platon.karaseov@spbstu.ru
Rússia, 195251, Saint-Petersburg

Bibliografia

  1. Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984. 135 с.
  2. Zhang L.D.J., Zhang X., Wang H., Li H., Li Y., Bu D. // J. Phys. D. 2021. V. 54. P. 333001.
  3. Redinger A., Hansen H., Linke U., Rosandi Y., Urbas-sek H., Michely T. // Phys. Rev. Lett. 2006. V. 96. P. 106103. https://www.doi.org/10.1103/PhysRevLett.96.106103
  4. Ieshkin A., Kireev D., Ozerova K., Senatulin B. // Mat. Lett. 2020. V. 272. P. 127829. https://www.doi.org/10.1016/j.matlet.2020.127829
  5. Insepov Z., Hassanein A., Norem J., Swenson D.R. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 261. P. 664. https://www.doi.org/10.1016/j.nimb.2007.04.134
  6. Kozole J., Winograd N. // Surface Analysis and Techniques in Biology / Ed. Smentkowski V.S., Springer Switzerland, 2014. P. 71. https://www.doi.org/10.1007/978-3-319-01360-2_4
  7. Mahoney C.M. Cluster Secondary Ion Mass Spectrometry: Principles and Applications. John Wiley & Sons, 2013.
  8. Delcorte A., Garrison B.J. // J. Phys. Chem. C. 2007. V. 111. P. 15312. https://www.doi.org/10.1021/jp074536j
  9. Khadem M., Pukha V.E., Penkov O.V., Khodos I.I., Belmesov A.A., Nechaev G.V., Kabachkov E.N., Karaseov P.A., Kim D.-E. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://www.doi.org/10.1016/j.surfcoat.2021.127670.
  10. Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M. V., Kim D.-E. // Biomaterials. 2016. V. 102. P. 130. https://www.doi.org/10.1016/j.biomaterials.2016.06.029
  11. Pukha V.E., Glukhov A.A., Belmesov A.A., Kabachkov E.N., Khodos I.I., Khadem M., Kim D.-E., Karaseov P.A. // Vacuum. 2023. V. 218. P. 112643. https://www.doi.org/10.1016/j.vacuum.2023.112643
  12. Pukha V., Popova J., Khadem M., Dae-Eun Kim, Kho-dos I., Shakhmin A., Mishin M., Krainov K., Titov A., Karaseov P. // International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics / Ed. Velichko E. et al. Cham: Springer, 2021. V. 255. P. 131. https://www.doi.org/10.1007/978-3-030-58868-7_15
  13. Maleyev M.V., Zubarev E.N., Pukha V.E., Drozdov A.N., Vus A.S., Devizenko A.Yu. // Metallofiz. Noveishie Tekhnol. 2015. V. 37. P. 91. https://www.doi.org/10.15407/mfint.37.06.0775
  14. Tersoff J. // Phys. Rev. B. 1988. V. 37. P. 6991. https://www.doi.org/10.1103/PhysRevB.37.6991
  15. Stuart S.J., Tutein A.B., Harrison J.A. // J. Chem. Phys. 2000. V. 112. P. 6472. https://www.doi.org/10.1063/1.481208
  16. Krantzman K.D., Kingsbury D.B., Garrison B.J. // Appl. Surf. Sci. 2006. V. 252. P. 6463. https://www.doi.org/10.1016/j.apsusc.2006.02.276
  17. Krantzman K.D., Garrison B.J. // Surf. Interface Anal. 2011. V. 43. P. 123. https://www.doi.org/10.1002/sia.3438
  18. Krantzman K.D., Wucher A. // J. Phys. Chem. C. 2010. V. 114. P. 5480. https://www.doi.org/10.1021/jp906050f
  19. Карасев К.П., Стрижкин Д.А., Титов А.И., Кара- сев П.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 1. P. 74.
  20. Thompson A.P., Aktulga H.M., Berger R., Bolintinea-nu D.S., Brown W.M., Crozier P.S., in't Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comp. Phys. Commun. 2022. V. 271. P. 10817. https://www.doi.org/10.1016/j.cpc.2021.108171
  21. Ziegler J.F., Biersack J.P. The Stopping and Range of Ions in Matter // Treatise on Heavy-Ion Science / Ed. Bromley D.A. Boston: Springer, 1985. P. 93. https://www.doi.org/10.1007/978-1-4615-8103-1_3
  22. Karasev K., Strizhkin D., Karaseov P. // IEEE Xplore Proceed. of the 2022 Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2022. P. 242. https://www.doi.org/10.1109/EExPolytech56308. 2022.9950888
  23. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. P. 3684. https://www.doi.org/10.1063/1.448118
  24. Krantzman K.D., Garrison B.J. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 652. https://www.doi.org/10.1016/j.nimb.2008.11.055
  25. Бериш Р. Распыление твердых тел ионной бомбардировкой. М.: Мир, 1984. 336 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Average crater depth (a) and parapet height (b) on the surface of a silicon crystal depending on the initial energy of the C60 ion at temperatures of 0 (1, 2) and 1000 K (3, 4). Comparison for the Airebo (1, 3) and Tersoff (2, 4) interaction potentials.

Baixar (124KB)
3. Fig. 2. Average value of the radial coordinate of carbon atoms depending on the initial energy of the C60 ion at temperatures of 0 (1, 2) and 1000 K (3, 4) and the Airebo (1, 3) and Tersoff (2, 4) interaction potentials.

Baixar (77KB)
4. Fig. 3. Average number of sputtered silicon (1–4) and carbon (1 ′–4 ′) atoms at temperatures of 0 (1, 1 ′, 2, 2 ′) and 1000 K (3, 3 ′, 4, 4 ′) and Airebo (1, 1′, 3, 3 ′) and Tersoff (2, 2 ′, 4, 4 ′) interaction potentials.

Baixar (115KB)
5. Fig. 4. Cross-section of a 20 Å thick silicon crystal after 30 C60 molecules with energies of 2, 8 and 14 keV have been successively dropped onto its surface. Si atoms are light, C atoms are dark.

Baixar (125KB)
6. Fig. 5. Total number of sputtered atoms during successive incidence of C60 ions on the surface of a silicon crystal for energies of 8 (1, 2) and 14 keV (3, 4) and Tersoff (1, 3) and Aire- bo (2, 4) potentials. Every 10 incident ions are equivalent to a fluence of 3.4 × 1013 cm–2.

Baixar (75KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024