A Comprehensive Study of the Local Atomic Structure of Promising Ti-Containing Compounds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comprehensive study of the local atomic structure of titanium compounds obtained by mechanical activation (Ti–Al–C, Ti2AlC) and reference samples (Ti, TiH2) using EXAFS and EXELFS spectroscopy has been carried out. An analysis of the local atomic structure of titanium hydride shows that the presence of hydrogen expands the crystal lattice and leads to a change in the parameters of the local atomic structure. This change is observed both in the EXAFS and EXELFS spectra. It is shown that after mechanical activation, the coordination numbers decrease, which may indicate the formation of a multiphase system. Further annealing leads to the formation of the Ti2AlC compound, which is confirmed by the results of model calculations.

Sobre autores

I. Averkiev

Udmurt Federal Research Center Ural Branch of the RAS

Autor responsável pela correspondência
Email: averkiev1997@mail.ru
Russia, 426008, Izhevsk

O. Bakieva

Udmurt Federal Research Center Ural Branch of the RAS

Email: averkiev1997@mail.ru
Russia, 426008, Izhevsk

V. Kriventsov

Boreskov Institute of Catalysis Siberian Branch of the RAS

Email: averkiev1997@mail.ru
Russia, 630090, Novosibirsk

Bibliografia

  1. Sokol M., Natu V., Kota S., Barsoum M.W. // Trends Chem. 2019. V. 1. № 2. P. 210. https://doi.org/10.1016/j.trechm.2019.02.016
  2. Barsoum M.W. // Progress Solid State Chem. 2000. V. 28. № 1–4. P. 201. https://doi.org/10.1016/S0079-6786(00)00006-6
  3. Smialek J.L. // Metall. Mater. Trans. A. 2018. V. 49. № 3. P. 782. https://doi.org/10.1007/s11661-017-4346-9
  4. Gonzalez-Julian J., Mauer G., Sebold D., Mack D.E., Vassen R. // J. Am. Ceram. Soc. 2020. V. 103. № 4. P. 2362. https://doi.org/10.1111/jace.16935
  5. Wang Z., Ma G., Li Z. et al. // Corrosion Sci. 2021. V. 192. P. 109788. https://doi.org/10.1016/j.corsci.2021.109788
  6. Chirica I.M., Mirea A.G., Neatu S. et al. // J. Mater. Chem. A. 2021. V. 9. № 35. P. 19589. https://doi.org/10.1039/D1TA04097A
  7. Sarwar J., Shrouf T., Srinivasa A. et al. // Sol. En. Mater. Sol. Cells. 2018. V. 182. P. 76. https://doi.org/10.1016/j.solmat.2018.03.018
  8. Lakhnik A.M., Kirian I.M., Rud A.D. // Int. J. Hydrogen En. 2022. V. 47. № 11. P. 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081
  9. Naguib M., Kurtoglu M., Presser V. et al. // Adv. Mater. 2011. V. 23. № 37. P. 4248. https://doi.org/10.1002/adma.201102306
  10. Magnuson M., Mattesini M. // Thin Solid Films. 2017. V. 621. P. 108. https://doi.org/10.1016/j.tsf.2016.11.005
  11. Bakieva O.R., Nemtsova O.M. // J. Electron Spectr. 2018. V. 222. P.15. https://doi.org/10.1016/j.elspec.2017.10.004
  12. Бакиева О.Р., Немцова О.М., Сурнин Д.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. №. 10. С. 53. https://doi.org/10.7868/S0207352815060049
  13. Eryomina M.A., Lomayeva S.F., Demakov S.L. // Mater. Chem. Phys. 2021. V. 273. P. 125114. https://doi.org/10.1016/j.matchemphys.2021.125114
  14. Кочубей Д.И. EXAFS-спектроскопия в катализе. Новосибирск: Наука. Сиб. отделение, 1992. 145 с.
  15. Klementiev K.V. Code VIPER for Windows (freeware: http://www.desy.de/_klmn/viper.html).
  16. Rehr J.J. FEFF Project (https://feff.phys.washington.edu/feffproject-feff.html)
  17. Wang C., Zhang Y., Wei Y. et al. // Powder Technol. 2016. V. 302. P. 423. https://doi.org/10.1016/j.powtec.2016.09.005
  18. Novikova M.B., Ponomarenko A.M. // Metal Sci. Heat Treatment. 2008. V. 50. № 7–8. P. 355. https://doi.org/10.1007/s11041-008-9072-x
  19. Аверкиев И.К., Бакиева О.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 9. P. 73. https://doi.org/10.31857/S1028096022050041
  20. Dahlqvist M., Alling B., Abrikosov I.A. et al. // Phys. Rev. B. 2010. V. 81. № 2. P. 024111. https://doi.org/10.1103/physrevb.81.024111
  21. Nelson J.R., Needs R.J., Pickard C.J. // Phys. Rev. Mater. 2021. V. 5. № 12. P. 123801. https://doi.org/10.1103/PhysRevMaterials.5.123801

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (142KB)
3.

Baixar (182KB)
4.

Baixar (215KB)
5.

Baixar (74KB)
6.

Baixar (201KB)

Declaração de direitos autorais © И.К. Аверкиев, О.Р. Бакиева, В.В. Кривенцов, 2023