Computational analysis of flight data on convective heating of the Martian descent vehicle within the framework of the perfect gas model

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spatial problem of supersonic flow past the MSL descent space vehicle in the dense layers of the Martian atmosphere is solved using the perfect gas model. The system of Reynolds-averaged Navier-Stokes (RANS) equations is numerically integrated together with the Baldwin-Lomax algebraic turbulent mixing model. In addition to studying the flow field patterns in the vicinity of the descent vehicle for real trajectory conditions, the calculated data on convective heating of the surface on the windward and leeward sides are analyzed. Change in the heating conditions during laminar-turbulent transition near the surface is taken into account. A comparison with flight data is presented.

全文:

受限制的访问

作者简介

S. Surzhikov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: surg@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. Лунев В.В. Течение реальных газов с большими сверхзвуковыми скоростями. М.: Физматлит. 2007. 760 с.
  2. Землянский Б.А., Лунев В.В., Власов В.И. и др. Конвективный теплообмен летательных аппаратов. М.: Физматлит. 2014. 330 с.
  3. Tannehill J.C., Anderson D.A., Pletcher R.H. Computational Fluid Mechanics and Heat transfer. 1997. Taylor&Francis. 792 p.
  4. Bertin J.J. Hypersonic aerothermodynamics. American Institute of Aeronautics and Astronautics, Inc., Washington, DC. 1994. 608 p.
  5. Суржиков С.Т. Компьютерная аэрофизика спускаемых космических аппаратов. Двухмерные модели. М.: Физматлит, 2018. 543 с.
  6. Hollis B.R., Collier A.S. Turbulent Aeroheating Testing of Mars Science Laboratory Entry Vehicle in Perfect-Gas Nitrogen// AIAA 2007–1208. 2007. 20 p.
  7. Cheatwood F.M., Gnoffo P.A. Users Manual for the Langley Aerothermo-dynamic Upwind Algorithm (LAURA)// NASA TM-4674, April 1996.
  8. Cebeci T., Smith A.N.O. Analysis of Turbulent Boundary Layers. Academic Press. 1974. 404 p.
  9. Baldwin B.S., Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78–0257. 1978. 8 p.
  10. Суржиков С.Т. Анализ экспериментальных данных по конвективному нагреву модели марсианского спускаемого аппарата с использованием алгебраических моделей турбулентности // Изв. РАН. МЖГ. 2019. № 6. С. 129–140.
  11. Edquist K.T., Hollis B.R., Johnston C.O., Bose D., White T.R., Mahzari M. Mars Science Laboratory Heat Shield Aerothermodynamics: Design and Reconstruction// JSR. 2014. V.51. № v4. P. 1106–1124.
  12. Суржиков С.Т. Радиационно-конвективный нагрев поверхности марсианского спускаемого аппарата MSL при учете турбулентного характера обтекания// Изв. РАН. МЖГ. 2023. № 5. С. 119–137

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculation grid and isotherms in two sections along the x-axis.

下载 (1002KB)
3. Fig. 2. Longitudinal velocity field Vx = u/V∞ in the vicinity of the MSL SA at t=65.1 s.

下载 (748KB)
4. Fig. 3. Temperature field in the vicinity of the MSL CA at t=65.1 s.

下载 (873KB)
5. Fig. 4. Density of convective heat fluxes on the frontal surface of the aerodynamic shield of the MSL spacecraft at t1=61.5 s (a), t2=65.1 s (b), t3=69.3 s (c), t4=74.0 s (d).

下载 (829KB)
6. Fig. 5. Distributions of convective heat flux densities along the plane of symmetry of the frontal aerodynamic shield of the MSL spacecraft at t1=61.5 s (a), t2=65.1 s (b), t3=69.3 s (c), t4=74.0 s (d). Black curves – laminar flow, colored curves – turbulent flow.

下载 (399KB)
7. Fig. 6. Distribution of the convective Qw,tot = Qw,hc + Qdif and integral radiative heat flux Qrad densities along the MSL SA surface in the symmetry plane at t = 65 s (left) and t = 74 s (right). Baldwin–Lomax turbulent mixing model. Constant frontal surface temperature Tw = 1000 K. Solid black curve is the total convective heat flux density, dashed line is the heat flux density due to the diffusion flux to the absolutely catalytic surface; dashed line is the heat conductivity component; solid curve with round markers is the integral radiative heat flux density.

下载 (340KB)

版权所有 © Russian Academy of Sciences, 2024