Investigation of Parkinsonism Development Mechanisms and Novel Approaches to Multisystem Neurorehabilitation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Parkinsonism is one of the most prevalent neurological syndromes, characterized by the disruption of the dopaminergic system of the brain. It has been demonstrated that locomotor and postural functions are amongst the earliest to be compromised. The mechanisms underlying parkinsonism remain largely unexplored, necessitating the development of novel etiopathogenetic treatment approaches. Transgenic knockout (KO) animals serve as a unique model for studying the molecular and genetic basis of brain functioning in both normal and pathological conditions. This review focuses on certain transgenic animal models used to investigate disruptions in the extrapyramidal nigrostriatal control of spinal and brainstem sensorimotor networks. Rats with a dopamine transporter deficiency (DAT-KO) are widely utilized to study the dopaminergic system. The administration of alpha-methyl-p-tyrosine (AMPT), a dopamine synthesis inhibitor, to these animals allows for the creation of a unique reversible parkinsonism model. The TAAR-KO mice model provides a valuable tool for evaluating the functional significance of the trace amine (TA) system and its associated receptors (trace amine associated receptors, TAAR) in sensorimotor control. Early studies have demonstrated the influence of TAAR1 and TAAR5 receptors on dopamine levels and the state of dopaminergic neurons. Notably, TAAR-KO animals exhibit improved motor abilities and coordination skills compared to wild-type animals. Based on these findings, it can be hypothesized that targeting trace amine receptors may help restore the function of dopaminergic neurons and compensate for motor disturbances associated with parkinsonism. Electrical stimulation of the spinal cord is capable of activating neuronal networks, enhancing synaptic plasticity, and promoting functional recovery when dopaminergic neurotransmission is impaired. In combination with the effects on trace amine receptors, this approach, as part of the previously proposed multisystem neurorehabilitation strategy, may contribute to a synergistic therapeutic effect.

作者简介

Y. Sysoev

Pavlov Institute of Physiology

Email: susoyev92@mail.ru
St. Petersburg, Russia

D. Kalinina

Institute of Translational Biomedicine, St. Petersburg State University; Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”

St. Petersburg, Russia; Federal Territory Sirius, Russia

A. Makhortykh

Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”

Federal Territory Sirius, Russia

P. Musienko

Institute of Translational Biomedicine, St. Petersburg State University; Neurobiology Program, Scientific Center for Genetics and Life Sciences, Scientific and Technological University “Sirius”; Federal center of brain research and neurotechnologies

Email: pol-spb@mail.ru
St. Petersburg, Russia; Federal Territory Sirius, Russia; Moscow, Russia

参考

  1. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 39(1): 31–59. https://doi.org/10.1007/s10571-018-0632-3
  2. Eiden LE, Weihe E (2011) VMAT2: А dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216: 86–98. https://doi.org/10.1111/j.1749-6632.2010.05906.x
  3. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1): 182–217. https://doi.org/10.1124/pr.110.002642
  4. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Br J Pharmacol 172(1): 1–23. https://doi.org/10.1111/bph.12906
  5. Gerfen CR (2022) Segregation of D1 and D2 dopamine receptors in the striatal direct and indirect pathways: An historical perspective. Front Synaptic Neurosci 14: 1002960. https://doi.org/10.3389/fnsyn.2022.1002960
  6. Fuentes R, Petersson P, Nicolelis MA (2010) Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: Mechanistic approach. Eur J Neurosci 32(7): 1100-8.95. https://doi.org/10.1111/j.1460-9568.2010.07417.x
  7. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34: 441–466. https://doi.org/10.1146/annurev-neuro-061010-113641
  8. De Oliveira-Souza R (2012) The human extrapyramidal system. Med Hypotheses 79(6): 843–852. https://doi.org/10.1016/j.mehy.2012.09.004
  9. Musienko P, van den Brand R, Märzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J Neurosci 31(25): 9264–9278. https://doi.org/10.1523/JNEUROSCI.5796-10.2011
  10. Dorman D (2015) Extrapyramidal system neurotoxicity: Animal models. Handb Clin Neurol 131: 207–223. https://doi.org/10.1016/b978-0-444-62627-1.00012-3
  11. Blakely RD, Bauman AL (2000) Biogenic amine transporters: Regulation in flux. Current opinion in neurobiology 10(3): 328–336. https://doi.org/10.1016/S0959-4388(00)00088-X
  12. Gainetdinov RR, Caron MG (2003) Monoamine transporters: From genes to behavior. Annu Rev Pharmacol Toxicol 43: 261–284. https://doi.org/10.1146/annurev.pharmtox.43.050802.112309
  13. Gerstbrein K, Sitte HH (2006) Currents in neurotransmitter transporters. Handb Exp Pharmacol (175): 95–111. https://doi.org/10.1007/3-540-29784-7_5
  14. Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3): 585–640. https://doi.org/10.1124/pr.108.000869
  15. Reith ME, Zhen J, Chen N (2006) The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol (175): 75–93. https://doi.org/10.1007/3-540-29784-7_4
  16. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: Structure, regulation and function. Nat Rev Neurosci 4(1): 13–25. https://doi.org/10.1038/nrn1008
  17. Sotnikova TD, Caron MG, Gainetdinov RR (2006) DDD mice, a novel acute mouse model of Parkinson's disease. Neurology 67(7 Suppl 2): S12–7. https://doi.org/10.1212/wnl.67.7_suppl_2.s12
  18. Fayyad J, Sampson NA, Hwang I, Adamowski T, Aguilar-Gaxiola S, Al-Hamzawi A, Andrade LH, Borges G, de Girolamo G, Florescu S, Gureje O, Haro JM, Hu C, Karam EG, Lee S, Navarro-Mateu F, O'Neill S, Pennell BE, Piazza M, Posada-Villa J, Ten Have M, Torres Y, Xavier M, Zaslavsky AM, Kessler RC (2017) The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. Atten Defic Hyperact Disord 9(1): 47–65. https://doi.org/10.1007/s12402-016-0208-3
  19. Cook EH, Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56(4): 993–998.
  20. Sotnikova TD, Zorina OI, Ghisi V, Caron MG, Gainetdinov RR (2008) Trace amine associated receptor 1 and movement control. Parkinsonism Relat Disord 14 Suppl 2: S99–S102. https://doi.org/10.1016/j.parkreldis.2008.04.006
  21. Leo D, Sukhanov I, Gainetdinov RR (2018) Novel translational rat models of dopamine transporter deficiency. Neural Regen Res 13(12): 2091–2093. https://doi.org/10.4103/1673-5374.241453
  22. Kalinina DS, Lyakhovetskii VA, Gorskii OV, Shkorbatova PY, Pavlova NV, Bazhenova EY, Sysoev YI, Gainetdinov RR, Musienko PE (2023) Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion. Biomedicines 11(7): 1958. https://doi.org/10.3390/biomedicines11071958
  23. Ставровская АВ, Ямщикова НГ, Ольшанский АС, Гущина АС (2018) Опыт моделирования болезни Паркинсона: анализ поведенческих нарушений. Нервн болез (2): 44–50. [Stavrovskaya АV, Yamshchikova NG, Olshansky АS, Gushchina АS (2018) Modeling Parkinson’s Disease: Analysis of Behavioral Disturbances. Nervn bolez (2): 44–50. (In Russ)]. https://doi.org/10.24411/2071-5315-2018-12022
  24. Duty S, Jenner P (2011) Animal models of Parkinson's disease: A source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4): 1357–1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x
  25. Gamber KM (2016) Animal Models of Parkinson's Disease: New Models Provide Greater Translational and Predictive Value. BioTechniques 61(4): 210–211. https://doi.org/10.2144/000114463
  26. Dauer W, Przedborski S (2003) Parkinson's disease: Mechanisms and models. Neuron 39(6): 889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
  27. Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behav Brain Res 125(1-2): 109–125. https://doi.org/10.1016/s0166-4328(01)00309-6
  28. Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson's disease. Past, present, and future. Prog Brain Res 184: 133–157. https://doi.org/10.1016/s0079-6123(10)84007-5
  29. Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson's disease. Parkinsonism Relat Disord 18 Suppl 1: S183–S185. https://doi.org/10.1016/s1353-8020(11)70057-8
  30. Shih LC, Tarsy D (2010) Dopamine Depletors and Movement Disorders. In: Kompoliti K, Metman LV (eds) Encyclopedia of Movement Disorders. Oxford. Academ Press. 321–323.
  31. Widerlöv E (1979) Dose-dependent pharmacokinetics of alpha-methyl-p-tyrosine (alpha-MT) and comparison of catecholamine turnover rates after two doses of alpha-MT. J Neural Transm 44(3): 145–158. https://doi.org/10.1007/bf01253059
  32. Sotnikova TD, Beaulieu JM, Barak LS, Wetsel WC, Caron MG, Gainetdinov RR (2005) Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol 3(8): e271. https://doi.org/10.1371/journal.pbio.0030271
  33. Яхно НН, Штульман ДР (2001) Болезни нервной системы. М. Медицина. [Yakhno NN, Stulman DR (2001) Diseases of the nervous system. М. Meditsina. (In Russ)].
  34. Гусев ЕИ, Коновалов АН, Бурд ГС (2004) Неврология и нейрохирургия. М. Медицина. [Gusev EI, Konovalov AN, Burd GS (2004) Neurology and neurosurgery. М. Meditsina. (In Russ)].
  35. Aminoff MJ, Greenberg DA, Simon RP (2005) Clinical Neurology 6th ed. Lange. McGraw-Hill Medical.
  36. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5(6): 525–535. https://doi.org/10.1016/s1474-4422(06)70471-9
  37. Угрюмов МВ (2010) Болезни движений: медицинские и социальные аспекты / Болезнь Паркинсона: новые представления о патогенезе, диагностике и лечении. М. АПКиППРО. [Ugryumov MV (2010) Movement disorders: Medical and social aspects. In: Parkinson's disease: New ideas about pathogenesis, diagnostics and treatment. М. APKiPPRO. (In Russ)].
  38. Иллариошкин СН, Левин ОС (2017) Болезнь Паркинсона и расстройства движений. М. ООО Диалог. [Illarioshkin SN, Levine OS (2017) Parkinson's disease and movement disorders. М. OOO Dialog. (In Russ)].
  39. Armstrong MJ, Okun MS (2020) Diagnosis and Treatment of Parkinson Disease: A Review. Jama 323(6): 548–560. https://doi.org/10.1001/jama.2019.22360
  40. Vijayakumar D, Jankovic J (2016) Drug-Induced Dyskinesia, Part 2: Treatment of Tardive Dyskinesia. Drugs 76(7): 779–787. https://doi.org/10.1007/s40265-016-0568-1
  41. Lertxundi U, Isla A, Solinis MA, Domingo-Echaburu S, Hernandez R, Peral-Aguirregoitia J, Medrano J (2015) Anticholinergic burden in Parkinson's disease inpatients. Eur J Clin Pharmacol 71(10): 1271–1277. https://doi.org/10.1007/s00228-015-1919-7
  42. Mak MK, Wong-Yu IS, Shen X, Chung CL (2017) Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 13(11): 689–703. https://doi.org/10.1038/nrneurol.2017.128
  43. Chung CL, Thilarajah S, Tan D (2016) Effectiveness of resistance training on muscle strength and physical function in people with Parkinson's disease: A systematic review and meta-analysis. Clin Rehabil 30(1): 11–23. https://doi.org/10.1177/0269215515570381
  44. Mehrholz J, Kugler J, Storch A, Pohl M, Hirsch K, Elsner B (2016) Treadmill training for patients with Parkinson Disease. An abridged version of a Cochrane Review. Eur J Phys Rehabil Med 52(5): 704–713.
  45. Lötzke D, Ostermann T, Büssing A (2015) Argentine tango in Parkinson disease – a systematic review and meta-analysis. BMC Neurol 15: 226. https://doi.org/10.1186/s12883-015-0484-0
  46. Zhang S, Liu D, Ye D, Li H, Chen F (2017) Can music-based movement therapy improve motor dysfunction in patients with Parkinson's disease? Systematic review and meta-analysis. Neurol Sci 38(9): 1629–1636. https://doi.org/10.1007/s10072-017-3020-8
  47. Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KH, Wheatley K, Ives N (2013) Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev 2013(9): Cd002817. https://doi.org/10.1002/14651858.CD002817.pub4
  48. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C (2018) International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord 33(8): 1248–1266. https://doi.org/10.1002/mds.27372
  49. Мусиенко ПЕ, Горский ОВ, Килимник ВА, Козловская ИБ, Куртин Г, Эджертон ВР, Герасименко ЮП (2013) Регуляция позы и локомоции у децеребрированных и спинализированных животных. Рос физиол журн им ИМ Сеченова 99(3): 392–405. [Musienko PE, Gorskiĭ OV, Kilimnik VA, Kozlovskaia IB, Courtine G, Edgerton VR, Gerasimenko Iu P (2013) Neuronal control of posture and locomotion in decerebrated and spinalized animals. Russ J Physiol 99(3): 392–405. (In Russ)].
  50. Шапкова ЕЮ (2013) Электростимуляция спинного мозга для восстановления локомоторных возможностей при вертеброгенных миелопатиях. Физиотерапия бальнеология и реабилитация (3): 43–44. [Shapkova EY (2013) Electrical stimulation of the spinal cord to restore locomotor capabilities in vertebrogenic myelopathies. Fizioterapiya, balneologiya i reabilitatsiya (3): 43–44. (In Russ)].
  51. Никитюк ИЕ, Мошонкина ТР, Герасименко ЮП, Виссарионов СВ, Баиндурашвили АГ (2016) Регуляция баланса у детей с тяжелыми формами детского церебрального паралича после локомоторных тренировок в комбинации с электростимуляцией мышц и спинного мозга. Вопр курортол физиотерап и лечеб физ культ 93(5): 23–27. [Nikityuk IE, Moshonkina TR, Gerasimenko YP, Vissarionov SV, Baindurashvili AG (2016) The regulation of balance in the children presenting with severe cerebral palsy following the treatment with the use of the locomotor training in combination with the electrical stimulation of leg muscles and spinal cord. Vopr Kurortol Fizioter Lech Fiz Kult 93(5): 23–27. (In Russ)]. https://doi.org/10.17116/kurort2016523-27
  52. Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S (2013) A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 33(49): 19326–19340. https://doi.org/10.1523/jneurosci.1688-13.2013
  53. Musienko PE, Zelenin PV, Lyalka VF, Gerasimenko YP, Orlovsky GN, Deliagina TG (2012) Spinal and supraspinal control of the direction of stepping during locomotion. J Neurosci 32(48): 17442–17453. https://doi.org/10.1523/jneurosci.3757-12.2012
  54. Мусиенко ПЕ, Павлова НВ, Селионов ВА, Герасименко ЮП (2009) Локомоция, вызванная эпидуральной стимуляцией у децеребрированной кошки, после повреждения спинного мозга. Биофизика 54: 293–300 [Musienko PE, Pavlova NV, Selionov VA, Gersimenko IP (2009) Locomotion induced by epidural stimulation in a decerebrated cat following spinal cord injury. Biofizika 54: 293–300. (In Russ)].
  55. Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MA (2009) Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science 323(5921): 1578–1582. https://doi.org/10.1126/science.1164901
  56. Santana MB, Halje P, Simplício H, Richter U, Freire MAM, Petersson P, Fuentes R, Nicolelis MAL (2014) Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron 84(4): 716–722. https://doi.org/10.1016/j.neuron.2014.08.061
  57. Yadav AP, Nicolelis MAL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease. Mov Disord 32(6): 820–832. https://doi.org/10.1002/mds.27033
  58. Capogrosso M, Gandar J, Greiner N, Moraud EM, Wenger N, Shkorbatova P, Musienko P, Minev I, Lacour S, Courtine G (2018) Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. J Neural Eng 15(2): 026024. https://doi.org/10.1088/1741-2552/aaa87a
  59. Gerasimenko YP, Lavrov IA, Bogacheva IN, Shcherbakova NA, Kucher VI, Musienko PE. (2005) Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord. Neurosci Behav Physiol 35(3): 291–298.
  60. Shkorbatova P, Lyakhovetskii V, Pavlova N, Popov A, Bazhenova E, Kalinina D, Gorskii O, Musienko P (2020) Mapping of the Spinal Sensorimotor Network by Transvertebral and Transcutaneous Spinal Cord Stimulation. Front Syst Neurosci 14: 555593. https://doi.org/10.3389/fnsys.2020.555593
  61. Agari T, Date I (2012) Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease. Neurol Med Chir (Tokyo) 52(7): 470–474. https://doi.org/10.2176/nmc.52.470
  62. Pinto de Souza C, Hamani C, Oliveira Souza C, Lopez Contreras WO, Dos Santos Ghilardi MG, Cury RG, Reis Barbosa E, Jacobsen Teixeira M, Talamoni Fonoff E (2017) Spinal cord stimulation improves gait in patients with Parkinson's disease previously treated with deep brain stimulation. Mov Disord 32(2): 278–282. https://doi.org/10.1002/mds.26850
  63. de Lima-Pardini AC, Coelho DB, Souza CP, Souza CO, Ghilardi M, Garcia T, Voos M, Milosevic M, Hamani C, Teixeira LA, Fonoff ET (2018) Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait. Elife 7: e37727. https://doi.org/10.7554/eLife.37727
  64. Reis Menezes J, Bernhart Carra R, Aline Nunes G, da Silva Simões J, Jacobsen Teixeira M, Paiva Duarte K, Ciampi de Andrade D, Barbosa ER, Antônio Marcolin M, Cury RG (2020) Transcutaneous magnetic spinal cord stimulation for freezing of gait in Parkinson's disease. J Clin Neurosci 81: 306–309. https://doi.org/10.1016/j.jocn.2020.10.001
  65. Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Vörös J, Micera S, Suo Z, Courtine G, Lacour SP (2015) Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218): 159–163. https://doi.org/10.1126/science.1260318
  66. Musienko P, van den Brand R, Maerzendorfer O, Larmagnac A, Courtine G. (2009) Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans Biomed Eng 56(11 Pt 2): 2707–2711. https://doi.org/10.1109/TBME.2009.2027226
  67. Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P (2020) Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng 4(10): 1010–1022. https://doi.org/10.1038/s41551-020-00615-7
  68. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22(2): 138–145. https://doi.org/10.1038/nm.4025
  69. Capogrosso M, Wagner FB, Gandar J, Moraud EM, Wenger N, Milekovic T, Shkorbatova P, Pavlova N, Musienko P, Bezard E, Bloch J, Courtine G (2018) Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat Protoc 13(9): 2031–2061. https://doi.org/10.1038/s41596-018-0030-9
  70. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98(16): 8966–8971. https://doi.org/10.1073/pnas.151105198
  71. Gainetdinov RR, Hoener MC, Berry MD (2018) Trace Amines and Their Receptors. Pharmacol Rev 70(3): 549–620. https://doi.org/10.1124/pr.117.015305
  72. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6): 1181–1188. https://doi.org/10.1124/mol.60.6.1181
  73. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The Trace Amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia. Genes Brain Behav 6(7): 628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x
  74. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL, Hoener MC (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324(3): 948–956. https://doi.org/10.1124/jpet.107.132647
  75. Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR (2015) TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology 40(9): 2217–2227. https://doi.org/10.1038/npp.2015.65
  76. Khan MZ, Nawaz W (2016) The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother 83: 439–449. https://doi.org/10.1016/j.biopha.2016.07.002
  77. Pei Y, Asif-Malik A, Canales JJ (2016) Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci 10: 148. https://doi.org/10.3389/fnins.2016.00148
  78. Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 180: 161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002
  79. Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015) Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol 25(11): 2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011
  80. Espinoza S, Ghisi V, Emanuele M, Leo D, Sukhanov I, Sotnikova TD, Chieregatti E, Gainetdinov RR (2015) Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology 93: 308–313. https://doi.org/10.1016/j.neuropharm.2015.02.010
  81. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3): 372–385. https://doi.org/10.1016/j.ygeno.2004.11.010
  82. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 80(3): 416–425. https://doi.org/10.1124/mol.111.073304
  83. Hoefig CS, Zucchi R, Köhrle J (2016) Thyronamines and Derivatives: Physiological Relevance, Pharmacological Actions, and Future Research Directions. Thyroid 26(12): 1656–1673. https://doi.org/10.1089/thy.2016.0178
  84. Efimova EV, Kozlova AA, Razenkova V, Katolikova NV, Antonova KA, Sotnikova TD, Merkulyeva NS, Veshchitskii AS, Kalinina DS, Korzhevskii DE, Musienko PE, Kanov EV, Gainetdinov RR (2021) Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology 182: 108373. https://doi.org/10.1016/j.neuropharm.2020.108373
  85. Espinoza S, Sukhanov I, Efimova EV, Kozlova A, Antonova KA, Illiano P, Leo D, Merkulyeva N, Kalinina D, Musienko P, Rocchi A, Mus L, Sotnikova TD, Gainetdinov RR (2020) Trace Amine-Associated Receptor 5 Provides Olfactory Input into Limbic Brain Areas and Modulates Emotional Behaviors and Serotonin Transmission. Front Mol Neurosci 13: 18. https://doi.org/10.3389/fnmol.2020.00018
  86. Kalinina DS, Ptukha MA, Goriainova AV, Merkulyeva NS, Kozlova AA, Murtazina RZ, Shemiakova TS, Kuvarzin SR, Vaganova AN, Volnova AB, Gainetdinov RR, Musienko PE (2021) Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 11(1): 23092. https://doi.org/10.1038/s41598-021-02289-w
  87. Borton D, Micera S, Millán Jdel R, Courtine G (2013) Personalized neuroprosthetics. Sci Transl Med 5(210): 210rv2. https://doi.org/10.1126/scitranslmed.3005968
  88. Musienko P, Heutschi J, Friedli L, van den Brand R, Courtine G (2012). Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol. 235(1): 100–109. https://doi.org/10.1016/j.expneurol.2011.08.025
  89. Bachmann LC, Matis A, Lindau NT, Felder P, Gullo M, Schwab ME (2013) Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci Transl Med 5(208): 208ra146. https://doi.org/10.1126/scitranslmed.3005972
  90. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64(1): 137–159. https://doi.org/10.1016/j.brainresrev.2010.03.003
  91. Liu JF, Seaman R Jr, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Jun-Xu Li (2018) Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 43(12): 2435–2444. https://doi.org/10.1038/s41386-018-0017-9
  92. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12(10): 1333–1342. https://doi.org/10.1038/nn.2401
  93. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085): 1182–1185. https://doi.org/10.1126/science.1217416
  94. Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine G (2012) Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med 18(7): 1142–1147. https://doi.org/10.1038/nm.2845
  95. Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán Jdel R, Micera S, Courtine G (2014) Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 78: 21–29. https://doi.org/10.1016/j.neures.2013.10.001
  96. Gozal EA, O'Neill BE, Sawchuk MA, Zhu H, Halder M, Chou CC, Hochman S (2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits. 8: 134. https://doi.org/10.3389/fncir.2014.0013

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025