Клеточная терапия и биоматериалы: современные подходы в лечении травмы спинного мозга

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Травма спинного мозга (ТСМ) – патология с комплексным патогенезом, на сегодняшний день не имеющая полноценной стратегии лечения. Среди развивающихся методов лечения перспективным вариантом считается комбинированный подход, который заключается в использовании каркасов из биоматериалов для доставки как самих клеток, так и лекарственных средств к поврежденному участку спинного мозга (СМ). Одиночная клеточная терапия малоэффективна, но скаффолды на основе биоматериалов способны ограничить трансплантируемые клетки от агрессивного микроокружения очага травмы, а также обеспечить необходимый каркас для адгезии и дальнейшей интеграции клеток в нервную ткань реципиента. Современные подходы в области клеточной и органоидной терапии совместно с “умными” биоматериалами, способными изменять свои свойства в ответ на определенные стимулы, открывают широкие возможности в области терапии ТСМ. Настоящий обзор стремится охватить все актуальные данные в области новых методов лечения ТСМ с использованием клеточной терапии и биоматериалов, а также их комбинаций. В работе описаны достоинства и недостатки различных типов клеточных трансплантатов, включая менее распространенные, представлен метод трансплантации органоидов мозга, а также выделены наиболее часто используемые типы скаффолдов, отобранные по механическим свойствам и 3D-архитектуре.

Об авторах

К. А. Арсентьев

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”

Федеральная территория Сириус, Россия

В. С. Штоль

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”

Федеральная территория Сириус, Россия

С. П. Коновалова

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”

Федеральная территория Сириус, Россия

А. Д. Царева

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”

Федеральная территория Сириус, Россия

Д. А. Иванов

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”

Федеральная территория Сириус, Россия

П. Е. Мусиенко

Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”; Институт трансляционной биомедицины, Санкт-Петербургский государственный университет; Life Improvement by Future Technologies Center “LIFT”

Email: musienko.pe@talantiuspeh.ru
Федеральная территория Сириус, Россия; Санкт-Петербург, Россия; Москва, Россия

Список литературы

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Prim 3: 17018. https://doi.org/10.1038/nrdp.2017.18
  2. Liu S, Schackel T, Weidner N, Puttagunta R (2018) Biomaterial-supported cell transplantation treatments for spinal cord injury: Challenges and perspectives. Front Cell Neurosci 11: 430. https://doi.org/10.3389/fncel.2017.00430
  3. Khan FI, Ahmed Z (2022) Experimental Treatments for Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 11(21): 3409. https://doi.org/10.3390/cells11213409
  4. Huang H, Chen L, Moviglia G, Sharma A, Al Zoubi ZM, He X, Chen D (2022) Advances and prospects of cell therapy for spinal cord injury patients. J Neurorestoratol 10(1): 13–30. https://doi.org/10.26599/JNR.2022.9040007
  5. Zeng CW (2023) Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 24(18): 14349. https://doi.org/10.3390/ijms241814349
  6. Chen K, Yu W, Zheng G, Xu Z, Yang C, Wang Y, Yue Z, Yuan W, Hu B, Chen H (2024) Biomaterial-based regenerative therapeutic strategies for spinal cord injury. NPG Asia Mater 16: 5. https://doi.org/10.1038/s41427-023-00526-4
  7. Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA (2022) Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci (22): 13833. https://doi.org/10.3390/ijms232213833
  8. ZHANG Y, MAMUN A AL, YUAN Y, LU Q, XIONG J, YANG S, WU C, WU Y, WANG J (2021) Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 23(6): 417. https://doi.org/10.3892/mmr.2021.12056
  9. Guest J, Datta N, Jimsheleishvili G, Gater DR (2022) Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 12(7): 1126. https://doi.org/10.3390/jpm12071126
  10. Anjum A, Yazid MD, Daud MF, Idris J, Hwei Ng AM, Naicker AS, Rashidah Ismail OH, Kumar RKA, Lokanathan Y (2020) Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20): 7533. https://doi.org/10.3390/ijms21207533
  11. Zipser CM, Cragg JJ, Guest JD, Fehlings MG, Jutzeler CR, Anderson AJ, Curt A (2022) Cell-based and stem-cell-based treatments for spinal cord injury: Еvidence from clinical trials. Lancet Neurol 21(7): 659–670. https://doi.org/10.1016/S1474-4422(21)00464-6
  12. Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, Huie JR, Havton LA, Nout-Lomas YS, Ferguson AR, Beattie MS, Bresnahan JC, Tuszynski MH (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24(4): 484–490. https://doi.org/10.1038/nm.4502
  13. Huang L, Fu C, Xiong F, He C, Wei Q (2021) Stem Cell Therapy for Spinal Cord Injury. Cell Transplant 30: 963689721989266. https://doi.org/10.1177/0963689721989266
  14. Gant KL, Guest JD, Palermo AE, Vedantam A, Jimsheleishvili G, Bunge MB, Brooks AE, Anderson KD, Thomas CK, Santamaria AJ, Perez MA, Curiel R, Nash MS, Saraf-Lavi E, Pearse DD, Widerström-Noga E, Khan A, Dietrich WD, Levi AD (2022) Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J Neurotrauma 39(3-4): 285–299. https://doi.org/10.1089/neu.2020.7590
  15. Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR (2016) A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery 78(3): 436–447. https://doi.org/10.1227/NEU.0000000000001056
  16. Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD (2018) A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 22(6): 941–950. https://doi.org/10.1016/j.stem.2018.05.014
  17. Bosch-Queralt M, Fledrich R, Stassart RM (2023) Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 176: 105952. https://doi.org/10.1016/j.nbd.2022.105952
  18. Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T (2022) Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front. Neurosci 16: 800513. https://doi.org/10.3389/fnins.2022.800513
  19. Marcol W, ͆lusarczyk W, Larysz-Brysz M, Francuz T, Jędrzejowska-Szypułka H, Łabuzek K, Lewin-Kowalik J (2015) Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. World Neurosurg 84(2): 511–519. https://doi.org/10.1016/j.wneu.2015.04.027
  20. Assinck P, Sparling JS, Dworski S, Duncan GJ, Wu DL, Liu J, Kwon BK, Biernaskie J, Miller FD, Tetzlaff W (2020) Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports 15(1): 140–155. https://doi.org/10.1016/j.stemcr.2020.05.017
  21. Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD (2021) Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 11: 514181. https://doi.org/10.3389/fneur.2020.514181
  22. Hemati-Gourabi M, Cao T, Romprey MK, Chen M (2022) Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 16: 955598. https://doi.org/10.3389/fnins.2022.955598
  23. Tamaru T, Kobayakawa K, Saiwai H, Konno D, Kijima K, Yoshizaki S, Hata K, Iura H, Ono G, Haruta Y, Kitade K, Iida KI, Kawaguchi KI, Matsumoto Y, Kubota K, Maeda T, Okada S, Nakashima Y (2023) Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury. Exp Neurol 359: 114264. https://doi.org/10.1016/j.expneurol.2022.114264
  24. Yang T, Dai YJ, Chen G, Cui S Sen (2020) Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 14: 78. https://doi.org/10.3389/fncel.2020.00078
  25. Hayashi K, Hashimoto M, Koda M, Naito AT, Murata A, Okawa A, Takahashi K, Yamazaki M (2011) Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model: Laboratory investigation. J Neurosurg Spine 15(6): 582–593. https://doi.org/10.3171/2011.7.SPINE10775
  26. Zheng X, Wang W (2022) Astrocyte transplantation for repairing the injured spinal cord. J Biomed Res 36(5): 312-320. https://doi.org/10.7555/JBR.36.20220012
  27. Hastings N, Kuan WL, Osborne A, Kotter MRN (2022) Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 31: 9636897221105499. https://doi.org/10.1177/09636897221105499
  28. Chang J, Qian Z, Wang B, Cao J, Zhang S, Jiang F, Kong R, Yu X, Cao X, Yang L, Chen H (2023) Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun Signal 21(1): 37. https://doi.org/10.1186/s12964-022-01036-6
  29. Haas C, Fischer I (2013) Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. J Neurotrauma 30(12): 1035–1052. https://doi.org/10.1089/neu.2013.2915
  30. Li K, Javed E, Scura D, Hala TJ, Seetharam S, Falnikar A, Richard JP, Chorath A, Maragakis NJ, Wright MC, Lepore AC (2015) Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol 271: 479–492. https://doi.org/10.1016/j.expneurol.2015.07.020
  31. Lien B V., Tuszynski MH, Lu P (2019) Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol 314: 46–57. https://doi.org/10.1016/j.expneurol.2019.01.006
  32. Ursavas S, Darici H, Karaoz E (2021) Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res 99(6): 1579–1597. https://doi.org/10.1002/jnr.24817
  33. Oieni F, Reshamwala R, St John J (2022) Olfactory Ensheathing Cells for Spinal Cord Injury: The Cellular Superpowers for Nerve Repair. Neuroglia 3(4): 139–143. https://doi.org/10.3390/neuroglia3040009
  34. Li L, Adnan H, Xu B, Wang J, Wang C, Li F, Tang K (2015) Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis. Eur Spine J 24(5): 919–930. https://doi.org/10.1007/s00586-014-3416-6
  35. Watzlawick R, Rind J, Sena ES, Brommer B, Zhang T, Kopp MA, Dirnagl U, Macleod MR, Howells DW, Schwab JM (2016) Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis. PLoS Biol 14(5): e1002468. https://doi.org/10.1371/journal.pbio.1002468
  36. Chen H, Tan Q, Xie C, Li C, Chen Y, Deng Y, Gan Y, Zhan W, Zhang Z, Sharma A, Sharma H (2019) Application of olfactory ensheathing cells in clinical treatment of spinal cord injury: Meta-analysis and prospect. J Neurorestoratology 7(2): 70–81. https://doi.org/10.26599/jnr.2019.9040008
  37. Woodworth CF, Jenkins G, Barron J, Hache N (2019) Intramedullary cervical spinal mass after stem cell transplantation using an olfactory mucosal cell autograft. CMAJ 191(27): 761–764. https://doi.org/10.1503/cmaj.181696
  38. Williamson TL, Cutler A, Cobb MI, Rahimpour S, Butler ER, Harward SC, Cummings TJ, Friedman AH (2021) Autograft-derived spinal cord mass in the cervical spine following transplantation with olfactory mucosa cells for traumatic spinal cord injury: Case report. J Neurosurg Spine 34(2): 254–258. https://doi.org/10.3171/2020.6.SPINE20251
  39. Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE (2022) Microglia and Microglia-Like Cells: Similar but Different. Front Cell Neurosci 16: 816439. https://doi.org/10.3389/fncel.2022.816439
  40. Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG (2022) Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 13: 4096. https://doi.org/10.1038/s41467-022-31797-0
  41. Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC (2023) Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 32: 9636897231171001. https://doi.org/10.1177/09636897231171001
  42. Zhang L, Wang Y, Liu T, Mao Y, Peng B (2023) Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neurosci Bull 39(3): 491–502. https://doi.org/10.1007/s12264-022-01013-6
  43. Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Urushitani M, Kojima H (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Mol Ther 28(1): 254–265. https://doi.org/10.1016/j.ymthe.2019.09.004
  44. Xu Z, Peng B, Rao Y (2021) Microglia replacement by microglia transplantation (Mr MT) in the adult mouse brain. STAR Protoc 2(3): 100665. https://doi.org/10.1016/j.xpro.2021.100665
  45. Lammertse DP, Jones LAT, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: Results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50(9): 661–671. https://doi.org/10.1038/sc.2012.39
  46. Rajabzadeh N, Fathi E, Farahzadi R (2019) Stem cell-based regenerative medicine. Stem Cell Investig 6: 19. https://doi.org/10.21037/sci.2019.06.04
  47. Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN (2023) Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 6(1): 544. https://doi.org/10.1038/s42003-023-04893-0
  48. Lee J, Cho Y (2021) Potential roles of stem cell marker genes in axon regeneration. Exp Mol Med 53: 1–7. https://doi.org/10.1038/s12276-020-00553-z
  49. Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29(12): 1983–1994. https://doi.org/10.1002/stem.767
  50. Jiang W, Xu J (2020) Immune modulation by mesenchymal stem cells. Cell Prolif 53(1): 12712. https://doi.org/10.1111/cpr.12712
  51. Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q (2020) Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 11: 439. https://doi.org/10.1038/s41419-020-2620-z
  52. Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C (2023) Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 14: 1141601. https://doi.org/10.3389/fimmu.2023.1141601
  53. Shroff G (2016) Human Embryonic Stem Cell Therapy in Chronic Spinal Cord Injury: A Retrospective Study. Clin Transl Sci 9(3): 168–175. https://doi.org/10.1111/cts.12394
  54. Bellák T, Fekécs Z, Török D, Táncos Z, Nemes C, Tézsla Z, Gál L, Polgári S, Kobolák J, Dinnyés A, Nógrádi A, Pajer K (2020) Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: Modulation of the lesion microenvironment. Sci Rep 10: 22414. https://doi.org/10.1038/s41598-020-79846-2
  55. Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020) Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 10: 112. https://doi.org/10.1186/s13578-020-00475-3
  56. Son D, Zheng J, Kim IY, Kang PJ, Park K, Priscilla L, Hong W, Yoon BS, Park G, Yoo JE, Song G, Lee JB, You S (2023) Human induced neural stem cells support functional recovery in spinal cord injury models. Exp Mol Med 55: 1182–1192. https://doi.org/10.1038/s12276-023-01003-2
  57. Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G (2020) Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020: 2853650. https://doi.org/10.1155/2020/2853650
  58. Kossow S (2022) Creating a United Front: Harmonizing the United States Regulatory Policies Surrounding Human Embryonic Stem Cell Research. SMU Sci Technol Law Rev 25. https://doi.org/10.25172/smustlr.25.2.7
  59. Haworth R, Sharpe M (2021) Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 49(7): 1308–1316. https://doi.org/10.1177/0192623320918241
  60. Wu JX, Xia T, She LP, Lin S, Luo XM (2022) Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 31: 9636897221083252. https://doi.org/10.1177/09636897221083252
  61. Yang JR, Liao CH, Pang CY, Huang LLH, Chen YL, Shiue YL, Chen LR (2013) Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model. Cytotherapy 15(2): 201–208. https://doi.org/10.1016/j.jcyt.2012.09.001
  62. Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S (2016) Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model. Cell Transplant 25(3): 593–607. https://doi.org/10.3727/096368915X689460
  63. Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN (2021) Human Embryonic Stem Cell–derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 30: 963689720988245. https://doi.org/10.1177/0963689720988245
  64. Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H (2022) Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res Ther 13(1): 366. https://doi.org/10.1186/s13287-022-03054-0
  65. Costela-ruiz VJ, Melguizo-rodríguez L, Bellotti C, Illescas-montes R, Stanco D, Arciola CR, Lucarelli E (2022) Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int J Mol Sci 23(11): 6356. https://doi.org/10.3390/ijms23116356
  66. Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L (2022) Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther 13(1): 429. https://doi.org/10.1186/s13287-022-02985-y
  67. Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L (2023) Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 29: 16–35. https://doi.org/10.1016/j.bioactmat.2023.06.013
  68. Jiang F, Zhou H, Cheng Y, He Z, Meng P, Sun K, Wang P, Han X, Wang L, Yang M, Jiang N, Liu Y, Yuan C, Yang Q, An Y (2022) Various detailed characteristics of a new enhanced neurotrophic factor secreting rat derived bone marrow mesenchymal stem cells and its preliminary application in rat models of ischemic stroke. Exp Cell Res 416(1): 113140. https://doi.org/10.1016/j.yexcr.2022.113140
  69. Peshkova M, Korneev A, Suleimanov S, Vlasova II, Svistunov A, Kosheleva N, Timashev P (2023) MSCs’ conditioned media cytokine and growth factor profiles and their impact on macrophage polarization. Stem Cell Res Ther 14(1): 142. https://doi.org/10.1186/s13287-023-03381-w
  70. Sari MI, Jusuf NK, Munir D, Putra A, Bisri T, Ilyas S, Farhat F, Muhar AM, Rusda M, Amin MM (2023) The Role of Mesenchymal Stem Cell Secretome in the Inflammatory Mediators and the Survival Rate of Rat Model of Sepsis. Biomedicines 11(8): 2325. https://doi.org/10.3390/biomedicines11082325
  71. Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, Chen B, Jiang X, Yun C, Han W, Zhao C, Cheng S, Zhang S, Dai J (2017) Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26(5): 891–900. https://doi.org/10.3727/096368917X695038
  72. Cartarozzi LP, Perez M, Fernandes GG, Chiarotto GB, Luzo ÂCM, Campos AC, Kirchhoff F, de Oliveira ALR (2022) Neuroprotection and gliosis attenuation by intravenous application of human mesenchymal stem cells (hMSC) following ventral root crush in mice. Mol Cell Neurosci 118: 103694. https://doi.org/10.1016/j.mcn.2021.103694
  73. Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D (2019) Mesenchymal stem cells for spinal cord injury: Current options limitations, and future of cell therapy. Int J Mol Sci 20(11): 2698. https://doi.org/10.3390/ijms20112698
  74. Ullah M, Liu DD, Thakor AS (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 15: 421–438. https://doi.org/10.1016/j.isci.2019.05.004
  75. Kim M, Kim KH, Song SU, Yi TG, Yoon SH, Park SR, Choi BH (2018) Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 12(2): 1034–1045. https://doi.org/10.1002/term.2425
  76. Gu C, Li H, Wang C, Song X, Ding Y, Zheng M, Liu W, Chen Y, Zhang X, Wang L (2017) Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neurosci Lett 636: 282–289. https://doi.org/10.1016/j.neulet.2016.11.032
  77. Zhou YJ, Liu JM, Wei SM, Zhang YH, Qu ZH, Chen SB (2015) Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation. Neural Regen Res 10(8): 1305–1311. https://doi.org/10.4103/1673-5374.162765
  78. Han D, Wu C, Xiong Q, Zhou L, Tian Y (2015) Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury. Cell Biochem Biophys 71(3): 1341–1347. https://doi.org/10.1007/s12013-014-0354-1
  79. Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L (2022) Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells from Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 15: 768711. https://doi.org/10.3389/fncel.2021.768711
  80. Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M (2016) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7: 36. https://doi.org/10.1186/s13287-016-0295-2
  81. Zhilai Z, Biling M, Sujun Q, Chao D, Benchao S, Shuai H, Shun Y, Hui Z (2016) Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res 1642: 426–435. https://doi.org/10.1016/j.brainres.2016.04.025
  82. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, Xie L, Wu Y, Zhang Y, Wang X (2021) Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 7(1): 212. https://doi.org/10.1038/s41420-021-00572-3
  83. Kim Y, Jo SH, Kim WH, Kweon OK (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 6: 229. https://doi.org/10.1186/s13287-015-0236-5
  84. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR (2012) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 70(5): 1238–1247. https://doi.org/10.1227/NEU.0b013e31824387f9
  85. El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HAMA, El Maadawi ZM, Ewes I, Sabaawy HE (2014) Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant 23(6): 729–745. https://doi.org/10.3727/096368913X664540
  86. Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, Tapiador N, Sevilla M, Vazquez D, Carballido J, Fernandez C, Rodríguez-Boto G, Ovejero M, Vaquero J, Zurita M, Bonilla C, Rico MA, Aguayo C, Rodríguez A, Martínez P, de la Calle S, Fernández M V., Fernández C, de Reina L, Saab A, Cotua C, Santander XA, Gutiérrez R, Saldaña C, Hassan R, Ortega C, Madrid A, Mariscal M, Marín E, López LF, Pérez A, Ebrat EE, Vaquero M, Martín M, Mayoral I, Canales D, Carballido J, Vazquez D, Serrano R, Saucedo G, Tapiador N, Sevilla M, Cabrera R, Begoña Pérez de Camino MEM, Alarcón A, Naya D, Alonso R, Alamo JR, Romera I, Mourelle I, Sánchez C, Segovia R, Gutiérrez A, Guillo V, del Valle S, Rey P, Mucientes J, Rodríguez B (2018) Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 20(6): 806–819. https://doi.org/10.1016/j.jcyt.2018.03.032
  87. Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H (2013) Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 15(2): 185–191. https://doi.org/10.1016/j.jcyt.2012.09.005
  88. Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y (2014) Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 12: 253. https://doi.org/10.1186/s12967-014-0253-7
  89. Yang Y, Pang M, Du C, Liu ZY, Chen ZH, Wang NX, Zhang LM, Chen YY, Mo J, Dong JW, Xie PG, Wang QY, Liu B, Rong LM (2021) Repeated subarachnoid administrations of allogeneic human umbilical cord mesenchymal stem cells for spinal cord injury: A phase 1/2 pilot study. Cytotherapy 23(1): 57–64. https://doi.org/10.1016/j.jcyt.2020.09.012
  90. Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG (2016) Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J Spinal Cord Med 39(6): 655–664. https://doi.org/10.1179/2045772315Y.0000000048
  91. de Araújo LT, Macêdo CT, Damasceno PKF, Das Neves ÍGC, de Lima CS, Santos GC, de Santana TA, Sampaio GL de A, Silva DN, Villarreal CF, Chaguri AC de C, da Silva CG, Mota AC de A, Badaró R, Dos Santos RR, Soares MBP (2022) Clinical Trials Using Mesenchymal Stem Cells for Spinal Cord Injury: Challenges in Generating Evidence. Cells 11(6): 1019. https://doi.org/10.3390/cells11061019
  92. Liu DD, He JQ, Sinha R, Eastman AE, Toland AM, Morri M, Neff NF, Vogel H, Uchida N, Weissman IL (2023) Purification and characterization of human neural stem and progenitor cells. Cell 186(6): 1179–1194. https://doi.org/10.1016/j.cell.2023.02.017
  93. Suzuki H, Imajo Y, Funaba M, Nishida N, Sakamoto T, Sakai T (2022) Current Concepts of Neural Stem/Progenitor Cell Therapy for Chronic Spinal Cord Injury. Front Cell Neurosci 15: 794692. https://doi.org/10.3389/fncel.2021.794692
  94. Gilbert EAB, Lakshman N, Lau KSK, Morshead CM (2022) Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 11(5): 846. https://doi.org/10.3390/cells11050846
  95. Liu Y, Tan B, Wang L, Long Z, Li Y, Liao W, Wu Y (2015) Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int J Clin Exp Pathol 8(4): 3835–3842.
  96. Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X (2020) Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 20(6): 148. https://doi.org/10.3892/etm.2020.9277
  97. Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S (2020) Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology. Front Cell Neurosci 14: 590960. https://doi.org/10.3389/fncel.2020.590960
  98. Suzuki H, Ahuja CS, Salewski RP, Li L, Satkunendrarajah K, Nagoshi N, Shibata S, Fehlings MG (2017) Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS One 12(8): 0182339. https://doi.org/10.1371/journal.pone.0182339
  99. Sankavaram SR, Hakim R, Covacu R, Frostell A, Neumann S, Svensson M, Brundin L (2019) Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery. Stem Cell Rep 12(5): 950–966. https://doi.org/10.1016/j.stemcr.2019.03.013
  100. Li X, Peng Z, Long L, Lu X, Zhu K, Tuo Y, Chen N, Zhao X, Wang L, Wan Y (2020) Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury. Exp Mol Med 52(12): 2020–2033. https://doi.org/10.1038/s12276-020-00536-0
  101. Li T, Zhao X, Duan J, Cui S, Zhu K, Wan Y, Liu S, Peng Z, Wang L (2021) Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med 22(1): 711. https://doi.org/10.3892/etm.2021.10143
  102. Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, Aarabi B, Hsieh J, Gant K (2019) Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma 36(6): 891–902. https://doi.org/10.1089/neu.2018.5843
  103. Silvestro S, Bramanti P, Trubiani O, Mazzon E (2020) Stem cells therapy for spinal cord injury: An overview of clinical trials. Int J Mol Sci 21(2): 659. https://doi.org/10.3390/ijms21020659
  104. Takahashi K, Yamanaka S (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126(4): 663–676. https://doi.org/10.1016/j.cell.2006.07.024
  105. Huang P, Zhu J, Liu Y, Liu G, Zhang R, Li D, Pei D, Zhu P (2021) Identification of New Transcription Factors that Can Promote Pluripotent Reprogramming. Stem Cell Rev Reports 17(6): 2223–2234. https://doi.org/10.1007/s12015-021-10220-z
  106. Bell S, Hettige NC, Silveira H, Peng H, Wu H, Jefri M, Antonyan L, Zhang Y, Zhang X, Ernst C (2019) Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an Effective Model of Forebrain Neural Progenitor Cells and Mature Neurons. Bio-protocol 9(5): 3188. https://doi.org/10.21769/BioProtoc.3188
  107. Madrid M, Sumen C, Aivio S, Saklayen N (2021) Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges. Curr Protoc 1(3): 88. https://doi.org/10.1002/cpz1.88
  108. Kong D, Feng B, Amponsah AE, He J, Guo R, Liu B, Du X, Liu X, Zhang S, Lv F, Ma J, Cui H (2021) hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice. Stem Cell Res Ther 12: 172. https://doi.org/10.1186/s13287-021-02217-9
  109. Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q (2022) Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 11(17): 2765. https://doi.org/10.3390/cells11172765
  110. Attwood SW, Edel MJ (2019) ips-cell technology and the problem of genetic instability–can it ever be safe for clinical use? J Clin Med 8(3): 288. https://doi.org/10.3390/jcm8030288
  111. Iida T, Iwanami A, Sanosaka T, Kohyama J, Miyoshi H, Nagoshi N, Kashiwagi R, Toyama Y, Matsumoto M, Nakamura M, Okano H (2017) Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells. Stem Cells 35(5): 1316–1327. https://doi.org/10.1002/stem.2581
  112. Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S (2020) Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 9(1): 121–136. https://doi.org/10.1089/biores.2019.0046
  113. Bailly A, Milhavet O, Lemaitre JM (2022) RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics 14(2): 317. https://doi.org/10.3390/pharmaceutics14020317
  114. Kajikawa K, Imaizumi K, Shinozaki M, Shibata S, Shindo T, Kitagawa T, Shibata R, Kamata Y, Kojima K, Nagoshi N, Matsumoto M, Nakamura M, Okano H (2020) Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol Brain 13: 120. https://doi.org/10.1186/s13041-020-00662-w
  115. Sugai K, Sumida M, Shofuda T, Yamaguchi R, Tamura T, Kohzuki T, Abe T, Shibata R, Kamata Y, Ito S, Okubo T, Tsuji O, Nori S, Nagoshi N, Yamanaka S, Kawamata S, Kanemura Y, Nakamura M, Okano H (2021) First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen Ther 18: 321–333. https://doi.org/10.1016/j.reth.2021.08.005
  116. Kawai M, Nagoshi N, Okano H, Nakamura M (2023) A review of regenerative therapy for spinal cord injury using human iPS cells. North Am Spine Soc J 13: 100184. https://doi.org/10.1016/j.xnsj.2022.100184
  117. Chen H, Jin X, Li T, Ye Z (2022) Brain organoids: Establishment and application. Front Cell Dev Biol 10: 1029873. https://doi.org/10.3389/fcell.2022.1029873
  118. Eichmüller OL, Knoblich JA (2022) Human cerebral organoids – a new tool for clinical neurology research. Nat Rev Neurol 18(11): 661–680. https://doi.org/10.1038/s41582-022-00723-9
  119. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36(5): 432–441. https://doi.org/10.1038/nbt.4127
  120. Daviaud N, Friedel RH, Zou H (2018) Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5(6): ENEURO.0219-18.2018. https://doi.org/10.1523/ENEURO.0219-18.2018
  121. Wilson MN, Thunemann M, Liu X, Lu Y, Puppo F, Adams JW, Kim JH, Ramezani M, Pizzo DP, Djurovic S, Andreassen OA, Mansour AAF, Gage FH, Muotri AR, Devor A, Kuzum D (2022) Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat Commun 13(1): 7945. https://doi.org/10.1038/s41467-022-35536-3
  122. Jgamadze D, Lim JT, Zhang Z, Harary PM, Germi J, Mensah-Brown K, Adam CD, Mirzakhalili E, Singh S, Gu J Ben, Blue R, Dedhia M, Fu M, Jacob F, Qian X, Gagnon K, Sergison M, Fruchet O, Rahaman I, Wang H, Xu F, Xiao R, Contreras D, Wolf JA, Song H, Ming G li, Chen HCI (2023) Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell 30(2): 137–152. https://doi.org/10.1016/j.stem.2023.01.004
  123. Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, Li MY, Birey F, Yang X, Saw NL, Baker SW, Amin ND, Kulkarni S, Mudipalli R, Cui B, Nishino S, Grant GA, Knowles JK, Shamloo M, Huguenard JR, Deisseroth K, Pașca SP (2022) Maturation and circuit integration of transplanted human cortical organoids. Nature 610(7931): 319–326. https://doi.org/10.1038/s41586-022-05277-w
  124. Cao SY, Yang D, Huang ZQ, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY (2023) Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen Med 8(1): 27. https://doi.org/10.1038/s41536-023-00301-7
  125. Jin C, Wu Y, Zhang H, Xu B, Liu W, Ji C, Li P, Chen Z, Chen B, Li J, Wu X, Jiang P, Hu Y, Xiao Z, Zhao Y, Dai J (2023) Spinal cord tissue engineering using human primary neural progenitor cells and astrocytes. Bioeng Transl Med 8(2): 10448. https://doi.org/10.1002/btm2.10448
  126. Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, Chung S, Shu Y, Shao Z (2023) Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng 7(3): 253–269. https://doi.org/10.1038/s41551-022-00963-6
  127. Wang Z, Zhao H, Tang X, Meng T, Khutsishvili D, Xu B, Ma S (2022) CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research 3: 2022:9832128. https://doi.org/10.34133/2022/9832128
  128. Wertheim L, Edri R, Goldshmit Y, Kagan T, Noor N, Ruban A, Shapira A, Gat-Viks I, Assaf Y, Dvir T (2022) Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCs-Derived 3D Neuronal Networks. Adv Sci 9(11): 2105694. https://doi.org/10.1002/advs.202105694
  129. Kitahara T, Sakaguchi H, Morizane A, Kikuchi T, Miyamoto S, Takahashi J (2020) Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Rep 15(2): 467–481. https://doi.org/10.1016/j.stemcr.2020.06.016
  130. Xue W, Li B, Liu H, Xiao Y, Ren L, Li H, Shao Z (2023) Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. iScience 26(1): 105898. https://doi.org/10.1016/j.isci.2022.105898
  131. Han Y, King M, Tikhomirov E, Barasa P, Souza CDS, Lindh J, Baltriukiene D, Ferraiuolo L, Azzouz M, Gullo MR, Kozlova EN (2022) Towards 3D Bioprinted Spinal Cord Organoids. Int J Mol Sci 23(10): 5788. https://doi.org/10.3390/ijms23105788
  132. Farag MM (2023) Recent trends on biomaterials for tissue regeneration applications: Review. J Mater Sci 58: 527–558. https://doi.org/10.1007/s10853-022-08102-x
  133. Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG (2023) The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 24(1): 816. https://doi.org/10.3390/ijms24010816
  134. Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y (2022) Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 17: 29–48. https://doi.org/10.1016/j.bioactmat.2022.01.011
  135. Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ (2021) Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 144: 104973. https://doi.org/10.1016/j.neuint.2021.104973
  136. Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H (2022) Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. Biomed Res Int 8: 2022:5079153. https://doi.org/10.1155/2022/5079153
  137. Funnell JL, Balouch B, Gilbert RJ (2019) Magnetic composite biomaterials for neural regeneration. Front Bioeng Biotechnol 7: 179. https://doi.org/10.3389/fbioe.2019.00179
  138. Chen S, Zhao Y, Yan X, Zhang L, Li G, Yang Y (2019) PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res Part A 107(6): 1273–1283. https://doi.org/10.1002/jbm.a.36637
  139. Kapusetti G, More N, Choppadandi M (2019) Introduction to ideal characteristics and advanced biomedical applications of biomaterials. In: Biomedical Engineering and its Applications in Healthcare. 171–204. https://doi.org/10.1007/978-981-13-3705-5_8
  140. He W, Zhang X, Li X, Ju D, Mao T, Lu Y, Gu Y, Qi L, Wang Q, Wu Q, Dong C (2022) A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells. J Mater Chem B 10(30): 5753–5764. https://doi.org/10.1039/d2tb00792d
  141. Shen H, Xu B, Yang C, Xue W, You Z, Wu X, Ma D, Shao D, Leong K, Dai J (2022) A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 280: 121279. https://doi.org/10.1016/j.biomaterials.2021.121279
  142. Liu S, Xie YY, Wang L Di, Tai CX, Chen D, Mu D, Cui YY, Wang B (2021) A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 16(11): 2284–2292. https://doi.org/10.4103/1673-5374.310698
  143. Yousefifard M, Maleki SN, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, Hosseini M, Rahimi-Movaghar V (2020) A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: A systematic review and meta-analysis. J Neurosurg Spine 32(2): 269–284. https://doi.org/10.3171/2019.8.SPINE19201
  144. Fang Y, Guo Y, Liu T, Xu R, Mao S, Mo X, Zhang T, Ouyang L, Xiong Z, Sun W (2022) Advances in 3D Bioprinting. Chinese J Mech Eng Addit Manuf Front 1(1): 100011. https://doi.org/10.1016/j.cjmeam.2022.100011
  145. Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, Zhang Z (2021) 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272: 120771. https://doi.org/10.1016/j.biomaterials.2021.120771
  146. Szymoniuk M, Mazurek M, Dryla A, Kamieniak P (2023) The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury – A systematic review of preclinical in vivo studies. Exp Neurol 363: 114366. https://doi.org/10.1016/j.expneurol.2023.114366
  147. Wang J, Kong X, Li Q, Li C, Yu H, Ning G, Xiang Z, Liu Y, Feng S (2021) The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury. Biofabrication 13(4). https://doi.org/10.1088/1758-5090/ac0c5f
  148. Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, Graham L, Lu P, Sakamoto J, Marsala M, Chen S, Tuszynski MH (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25: 263-269. https://doi.org/10.1038/s41591-018-0296-z
  149. Gao C, Li Y, Liu X, Huang J, Zhang Z (2023) 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J 451(3): 138788. https://doi.org/10.1016/j.cej.2022.138788
  150. Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M (2020) Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 8: 598607. https://doi.org/10.3389/fbioe.2020.598607
  151. Cao J, Wu J, Mu J, Feng S, Gao J (2021) The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci 9(13): 4591–4606. https://doi.org/10.1039/d1bm00361e
  152. Luo Y, Xue F, Liu K, Li B, Fu C, Ding J (2021) Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Mater Des 201: 109484. https://doi.org/10.1016/j.matdes.2021.109484
  153. Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T (2023) Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 24(3): 2528. https://doi.org/10.3390/ijms24032528
  154. Liu H, Feng Y, Che S, Guan L, Yang X, Zhao Y, Fang L, Zvyagin A V, Lin Q (2023) An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 24(1): 86–97. https://doi.org/10.1021/acs.biomac.2c00920
  155. Dai Y, Wang W, Zhou X, Linli L, Tang Y, Shao M, Lyu F (2023) Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS Appl Nano Mater 6(7): 5980–5993. https://doi.org/10.1021/acsanm.3c00374
  156. Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, Oliveira JM, Koffler J, Collins MN (2022) Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 26(1): 63. https://doi.org/10.1186/s40824-022-00310-5
  157. Li Q, Shao X, Dai X, Guo Q, Yuan B, Liu Y, Jiang W (2022) Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Mater 14: 14. https://doi.org/10.1038/s41427-022-00362-y
  158. Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q (2022) A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 15: 103–119. https://doi.org/10.1016/j.bioactmat.2021.11.032
  159. Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L (2021) An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater 6(12): 4816–4829. https://doi.org/10.1016/j.bioactmat.2021.05.022
  160. Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z (2023) Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 220: 102375. https://doi.org/10.1016/j.pneurobio.2022.102375
  161. Park HH, Kim YM, Anh Hong LT, Kim HS, Kim SH, Jin X, Hwang DH, Kwon MJ, Song SC, Kim BG (2022) Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration. Biomaterials 284: 121526. https://doi.org/10.1016/j.biomaterials.2022.121526
  162. Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H (2023) Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 17: 1211066. https://doi.org/10.3389/fnins.2023.1211066
  163. Li L, Xiao B, Mu J, Zhang Y, Zhang C, Cao H, Chen R, Patra HK, Yang B, Feng S, Tabata Y, Slater NKH, Tang J, Shen Y, Gao J (2019) A MnO2 Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair via Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano 13(12): 14283–14293. https://doi.org/10.1021/acsnano.9b07598
  164. Zhang M, Bai Y, Xu C, Lin J, Jin JK, Xu A, Lou JN, Qian C, Yu W, Wu Y, Qi Y, Tao H (2021) Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv 28(1): 2548–2561. https://doi.org/10.1080/10717544.2021.2009937
  165. Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, Chen X, Guo J, Cheng H, Xia L, Lu W, Zhang C, Xie J, Wang H, Chai R (2022) GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology 20: 420. https://doi.org/10.1186/s12951-022-01669-2
  166. Zhao X, Lu X, Li K, Song S, Luo Z, Zheng C, Yang C, Wang X, Wang L, Tang Y, Wang C, Liu J (2023) Double crosslinked biomimetic composite hydrogels containing topographical cues and WAY-316606 induce neural tissue regeneration and functional recovery after spinal cord injury. Bioact Mater 24: 331–345. https://doi.org/10.1016/j.bioactmat.2022.12.024
  167. Xu Y, Zhou J, Liu C, Zhang S, Gao F, Guo W, Sun X, Zhang C, Li H, Rao Z, Qiu S, Zhu Q, Liu X, Guo X, Shao Z, Bai Y, Zhang X, Quan D (2021) Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Biomaterials 268: 120596. https://doi.org/10.1016/j.biomaterials.2020.120596
  168. Chen Z, Wang L, Chen C, Sun J, Luo J, Cui W, Zhu C, Zhou X, Liu X, Yang H, Shi Q (2022) NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair. NPG Asia Mater 14: 20. https://doi.org/10.1038/s41427-022-00368-6
  169. Zhang J, Cheng T, Chen Y, Gao F, Guan F, Yao M (2020) A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice. Biomed Mater 15(3): 035020. https://doi.org/10.1088/1748-605X/ab785f
  170. Yao M, Li J, Zhang J, Ma S, Wang L, Gao F, Guan F (2021) Dual-enzymatically cross-linked gelatin hydrogel enhances neural differentiation of human umbilical cord mesenchymal stem cells and functional recovery in experimental murine spinal cord injury. J Mater Chem B 9(2): 440–452. https://doi.org/10.1039/d0tb02033h
  171. Baneshi N, Moghadas BK, Adetunla A, Yusof MYPM, Dehghani M, Khandan A, Saber-Samandari S, Toghraie D (2021) Investigation the mechanical properties of a novel multicomponent scaffold coated with a new bio-nanocomposite for bone tissue engineering: Fabrication, simulation and characterization. J Mater Res Technol 15: 5526-5539. https://doi.org/10.1016/j.jmrt.2021.10.107
  172. Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Chen S, Duan B, Kuss M, Wu S (2022) Review of advances in electrospinning-based strategies for spinal cord regeneration. Mater Today Chem 24: 100944. https://doi.org/10.1016/j.mtchem.2022.100944
  173. Cao S, Bo R, Zhang Y (2023) Polymeric Scaffolds for Regeneration of Central/Peripheral Nerves and Soft Connective Tissues. Adv Nano Biomed Res 3(3): 2200147. https://doi.org/10.1002/anbr.202200147
  174. Agrawal L, Saidani M, Guillaud L, Terenzio M (2021) Development of 3D culture scaffolds for directional neuronal growth using 2-photon lithography. Mater Sci Eng C 131: 112502. https://doi.org/10.1016/j.msec.2021.112502
  175. Züger F, Marsano A, Poggio M, Gullo MR (2022) Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Adv Nano Biomed Res 2(2): 2100108. https://doi.org/10.1002/anbr.202100108
  176. Kaplan B, Merdler U, Szklanny AA, Redenski I, Guo S, Bar-Mucha Z, Michael N, Levenberg S (2020) Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials 251: 120062. https://doi.org/10.1016/j.biomaterials.2020.120062
  177. Chen C, Tang J, Gu Y, Liu L, Liu X, Deng L, Martins C, Sarmento B, Cui W, Chen L (2019) Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Adv Funct Mater 29(4): 1806899. https://doi.org/10.1002/adfm.201806899
  178. Peressotti S, Koehl GE, Goding JA, Green RA (2021) Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 7(9): 4136–4163. https://doi.org/10.1021/acsbiomaterials.1c00030
  179. Gelain F, Luo Z, Rioult M, Zhang S (2021) Self-assembling peptide scaffolds in the clinic. NPJ Regen Med 6(1): 9. https://doi.org/10.1038/s41536-020-00116-w
  180. Guo J, Leung KKG, Su H, Yuan Q, Wang L, Chu TH, Zhang W, Pu JKS, Ng GKP, Wong WM, Dai X, Wu W (2009) Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Biol Med 5(3): 345–351. https://doi.org/10.1016/j.nano.2008.12.001
  181. Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8): 2005-2016. https://doi.org/10.1016/j.biomaterials.2012.11.043
  182. Ye JC, Qin Y, Wu YF, Wang P, Tang Y, Huang L, Ma MJ, Zeng YS, Shen HY (2016) Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats. Spinal Cord 54(11): 933–941. https://doi.org/10.1038/sc.2016.36
  183. Ando K, Imagama S, Ito Z, Kobayashi K, Hida T, Nakashima H, Ito K, Tsushima M, Ishikawa Y, Matsumoto A, Nishida K, Nishida Y, Ishiguro N (2016) Self-assembling peptide reduces glial scarring, attenuates posttraumatic inflammation, and promotes neurite outgrowth of spinal motor neurons. Spine (Phila Pa 1976) 41(20): 1201–1207. https://doi.org/10.1097/BRS.0000000000001611
  184. Chakraborty A, Ciciriello AJ, Dumont CM, Pearson RM (2021) Nanoparticle-Based Delivery to Treat Spinal Cord Injury – a Mini-review. AAPS PharmSciTech 22(3): 101. https://doi.org/10.1208/s12249-021-01975-2
  185. Usmani S, Biagioni AF, Medelin M, Scaini D, Casani R, Aurand ER, Padro D, Egimendia A, Cabrer PR, Scarselli M, De Crescenzi M, Prato M, Ballerini L (2020) Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. Proc Natl Acad Sci U S A 117(41): 25212–25218. https://doi.org/10.1073/pnas.2005708117
  186. Yang L, Chueng STD, Li Y, Patel M, Rathnam C, Dey G, Wang L, Cai L, Lee KB (2018) A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat Commun 9(1): 3147. https://doi.org/10.1038/s41467-018-05599-2
  187. Wang XH, Tang XC, Li X, Qin JZ, Zhong WT, Wu P, Zhang F, Shen YX, Dai TT (2021) Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words). Artif Cells Nanomed Biotechnol 49(1): 699–708. https://doi.org/10.1080/21691401.2021.2013250
  188. Sun X, Zhang C, Xu J, Zhai H, Liu S, Xu Y, Hu Y, Long H, Bai Y, Quan D (2020) Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury. ACS Biomater Sci Eng 49(1): 699–708. https://doi.org/10.1021/acsbiomaterials.0c00023
  189. Raynald R, Shu B, Liu X Bin, Zhou JF, Huang H, Wang JY, Sun XD, Qin C, An YH (2019) Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther 25(9): 951-964. https://doi.org/10.1111/cns.13135
  190. Song YH, Agrawal NK, Griffin JM, Schmidt CE (2019) Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 148: 38–59. https://doi.org/10.1016/j.addr.2018.12.011
  191. Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S (2023) Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 18: 100524. https://doi.org/10.1016/j.mtbio.2022.100524
  192. Boyd BJ, Galle A, Daglas M, Rosenfeld J V., Medcalf R (2015) Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target 23(9): 847–853. https://doi.org/10.3109/1061186X.2015.1034280
  193. Wang XJ, Peng CH, Zhang S, Xu XL, Shu GF, Qi J, Zhu YF, Xu DM, Kang XQ, Lu KJ, Jin FY, Yu RS, Ying XY, You J, Du YZ, Ji JS (2019) Polysialic-Acid-Based Micelles Promote Neural Regeneration in Spinal Cord Injury Therapy. Nano Lett 19(2): 829–838. https://doi.org/10.1021/acs.nanolett.8b04020
  194. Park J, Zhang Y, Saito E, Gurczynski SJ, Moore BB, Cummings BJ, Anderson AJ, Shea LD (2019) Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 116(30): 14947–14954. https://doi.org/10.1073/pnas.1820276116
  195. Lin S, Zhao H Sen, Xu C, Zhou ZP, Wang DH, Chen SR, Mei XF (2022) Bioengineered Zinc Oxide Nanoparticle-Loaded Hydrogel for Combinative Treatment of Spinal Cord Transection. Front Bioeng Biotechnol 9: 796361. https://doi.org/10.3389/fbioe.2021.796361
  196. Liu W, Luo Y, Ning C, Zhang W, Zhang Q, Zou H, Fu C (2021) Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury. J Nanobiotechnol 19(1): 286. https://doi.org/10.1186/s12951-021-01031-y
  197. Yang B, Wang PB, Mu N, Ma K, Wang S, Yang CY, Huang ZB, Lai Y, Feng H, Yin GF, Chen TN, Hu CS (2021) Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen Res 16(9): 1829–1835. https://doi.org/10.4103/1673-5374.306095
  198. Rauti R, Secomandi N, Martín C, Bosi S, Severino FPU, Scaini D, Prato M, Vázquez E, Ballerini L (2020) Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Adv Biosyst 4(4): 1900233. https://doi.org/10.1002/adbi.201900233
  199. García E, Sánchez-Noriega S, González-Pacheco G, González-Vázquez AN, Ibarra A, Rodríguez-Barrera R (2023) Recent advances in the combination of cellular therapy with stem cells and nanoparticles after a spinal cord injury. Front Neurol 14: 1127878. https://doi.org/10.3389/fneur.2023.1127878
  200. Zeraatpisheh Z, Mirzaei E, Nami M, Alipour H, Mahdavipour M, Sarkoohi P, Torabi S, Azari H, Aligholi H (2021) Local delivery of fingolimod through PLGA nanoparticles and PuraMatrix-embedded neural precursor cells promote motor function recovery and tissue repair in spinal cord injury. Eur J Neurosci 54(4): 5620–5637. https://doi.org/10.1111/ejn.15391
  201. Wang D, Wang K, Liu Z, Wang Z, Wu H (2021) Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells After Spinal Cord Injury. Neurotox Res 39(2): 456–466. https://doi.org/10.1007/s12640-020-00304-y
  202. Kim KD, Lee KS, Coric D, Chang JJ, Harrop JS, Theodore N, Toselli RM (2021) A study of probable benefit of a bioresorbable polymer scaffold for safety and neurological recovery in patients with complete thoracic spinal cord injury: 6-month results from the INSPIRE study. JNeurosurg Spine 34(5): 808–817. https://doi.org/10.3171/2020.8.SPINE191507
  203. Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, Han G, Yin N, Jiang X, Zhao C, Cheng S, Wang Z, Chen Y, Chen Q, Song K, Zhang Z, Niu J, Wang L, Shi Q, Chen L, Yang H, Hou S, Zhang S, Dai J (2022) Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci China Life Sci 65(5): 909–926. https://doi.org/10.1007/s11427-021-1985-5
  204. Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S (2020) Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 15(9): 1686–1700. https://doi.org/10.4103/1673-5374.276340
  205. Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou Y, Dai J, Chu T (2020) NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. Cell Transplant 29: 963689720950637. https://doi.org/10.1177/0963689720950637
  206. Rahmani F, Atabaki R, Behrouzi S, Mohamadpour F, Kamali H (2023) The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 631: 122484. https://doi.org/10.1016/j.ijpharm.2022.122484
  207. Hu C, Yang L, Wang Y (2022) Recent advances in smart-responsive hydrogels for tissue repairing. MedComm – Biomater Appl 1(2): 23. https://doi.org/10.1002/mba2.23
  208. Hoque J, Sangaj N, Varghese S (2019) Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 19(1): 1800259. https://doi.org/10.1002/mabi.201800259
  209. Zheng XQ, Huang JF, Lin JL, Zhu YX, Wang MQ, Guo ML, Zan XJ, Wu AM (2021) Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury. Colloids Surf B Biointerfaces 199: 11153. https://doi.org/10.1016/j.colsurfb.2020.111532
  210. Wang C, Wang M, Xia K, Wang J, Cheng F, Shi K, Ying L, Yu C, Xu H, Xiao S, Liang C, Li F, Lei B, Chen Q (2021) A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater 6(8): 2523–2534. https://doi.org/10.1016/j.bioactmat.2021.01.029 325.
  211. Li Y, Wang Z, Pei S, Chen R, Li Y, Liang Y, Zhang C, Wang L, Dai J, Shi L (2024) Bisphosphonate-Based Hydrogel with pH-Responsive Minocycline Release Inhibits Microglia/Macrophages of M1 Polarization for Spinal Cord Injury Therapy. ACS Materials Lett 6(2): 553–565. https://doi.org/10.1021/acsmaterialslett.3c01126
  212. Li Y, Yang L, Hu F, Xu J, Ye J, Liu S, Wang L, Zhuo M, Ran B, Zhang H, Ye J, Xiao J (2022) Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function. ACS Appl Mater Interfaces 14(22): 25155–25172. https://doi.org/10.1021/acsami.2c04341
  213. Gu J, Gao B, Zafar H, Chu B, Feng X, Ni Y, Xu L, Bao R (2022) Thermo-sensitive hydrogel combined with SHH expressed RMSCs for rat spinal cord regeneration. Front Bioeng Biotechnol 10: 1001396. https://doi.org/10.3389/fbioe.2022.1001396
  214. Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C (2023) A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 19: 550–568. https://doi.org/10.1016/j.bioactmat.2022.04.029

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025