Клеточная терапия и биоматериалы: современные подходы в лечении травмы спинного мозга
- Авторы: Арсентьев К.А.1, Штоль В.С.1, Коновалова С.П.1, Царева А.Д.1, Иванов Д.А.1, Мусиенко П.Е.1,2,3
-
Учреждения:
- Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”
- Институт трансляционной биомедицины, Санкт-Петербургский государственный университет
- Life Improvement by Future Technologies Center “LIFT”
- Выпуск: Том 111, № 8 (2025)
- Страницы: 1322-1356
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- URL: https://rjeid.com/0869-8139/article/view/691444
- DOI: https://doi.org/10.7868/S2658655X25080052
- EDN: https://elibrary.ru/natgfy
- ID: 691444
Цитировать
Полный текст



Аннотация
Об авторах
К. А. Арсентьев
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”Федеральная территория Сириус, Россия
В. С. Штоль
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”Федеральная территория Сириус, Россия
С. П. Коновалова
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”Федеральная территория Сириус, Россия
А. Д. Царева
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”Федеральная территория Сириус, Россия
Д. А. Иванов
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”Федеральная территория Сириус, Россия
П. Е. Мусиенко
Научный центр генетики и наук о жизни, направление “Нейробиология”, научно-технологический университет “Сириус”; Институт трансляционной биомедицины, Санкт-Петербургский государственный университет; Life Improvement by Future Technologies Center “LIFT”
Email: musienko.pe@talantiuspeh.ru
Федеральная территория Сириус, Россия; Санкт-Петербург, Россия; Москва, Россия
Список литературы
- Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Prim 3: 17018. https://doi.org/10.1038/nrdp.2017.18
- Liu S, Schackel T, Weidner N, Puttagunta R (2018) Biomaterial-supported cell transplantation treatments for spinal cord injury: Challenges and perspectives. Front Cell Neurosci 11: 430. https://doi.org/10.3389/fncel.2017.00430
- Khan FI, Ahmed Z (2022) Experimental Treatments for Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 11(21): 3409. https://doi.org/10.3390/cells11213409
- Huang H, Chen L, Moviglia G, Sharma A, Al Zoubi ZM, He X, Chen D (2022) Advances and prospects of cell therapy for spinal cord injury patients. J Neurorestoratol 10(1): 13–30. https://doi.org/10.26599/JNR.2022.9040007
- Zeng CW (2023) Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 24(18): 14349. https://doi.org/10.3390/ijms241814349
- Chen K, Yu W, Zheng G, Xu Z, Yang C, Wang Y, Yue Z, Yuan W, Hu B, Chen H (2024) Biomaterial-based regenerative therapeutic strategies for spinal cord injury. NPG Asia Mater 16: 5. https://doi.org/10.1038/s41427-023-00526-4
- Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA (2022) Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci (22): 13833. https://doi.org/10.3390/ijms232213833
- ZHANG Y, MAMUN A AL, YUAN Y, LU Q, XIONG J, YANG S, WU C, WU Y, WANG J (2021) Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 23(6): 417. https://doi.org/10.3892/mmr.2021.12056
- Guest J, Datta N, Jimsheleishvili G, Gater DR (2022) Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 12(7): 1126. https://doi.org/10.3390/jpm12071126
- Anjum A, Yazid MD, Daud MF, Idris J, Hwei Ng AM, Naicker AS, Rashidah Ismail OH, Kumar RKA, Lokanathan Y (2020) Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20): 7533. https://doi.org/10.3390/ijms21207533
- Zipser CM, Cragg JJ, Guest JD, Fehlings MG, Jutzeler CR, Anderson AJ, Curt A (2022) Cell-based and stem-cell-based treatments for spinal cord injury: Еvidence from clinical trials. Lancet Neurol 21(7): 659–670. https://doi.org/10.1016/S1474-4422(21)00464-6
- Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, Huie JR, Havton LA, Nout-Lomas YS, Ferguson AR, Beattie MS, Bresnahan JC, Tuszynski MH (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24(4): 484–490. https://doi.org/10.1038/nm.4502
- Huang L, Fu C, Xiong F, He C, Wei Q (2021) Stem Cell Therapy for Spinal Cord Injury. Cell Transplant 30: 963689721989266. https://doi.org/10.1177/0963689721989266
- Gant KL, Guest JD, Palermo AE, Vedantam A, Jimsheleishvili G, Bunge MB, Brooks AE, Anderson KD, Thomas CK, Santamaria AJ, Perez MA, Curiel R, Nash MS, Saraf-Lavi E, Pearse DD, Widerström-Noga E, Khan A, Dietrich WD, Levi AD (2022) Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J Neurotrauma 39(3-4): 285–299. https://doi.org/10.1089/neu.2020.7590
- Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR (2016) A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery 78(3): 436–447. https://doi.org/10.1227/NEU.0000000000001056
- Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD (2018) A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 22(6): 941–950. https://doi.org/10.1016/j.stem.2018.05.014
- Bosch-Queralt M, Fledrich R, Stassart RM (2023) Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 176: 105952. https://doi.org/10.1016/j.nbd.2022.105952
- Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T (2022) Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front. Neurosci 16: 800513. https://doi.org/10.3389/fnins.2022.800513
- Marcol W, ͆lusarczyk W, Larysz-Brysz M, Francuz T, Jędrzejowska-Szypułka H, Łabuzek K, Lewin-Kowalik J (2015) Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. World Neurosurg 84(2): 511–519. https://doi.org/10.1016/j.wneu.2015.04.027
- Assinck P, Sparling JS, Dworski S, Duncan GJ, Wu DL, Liu J, Kwon BK, Biernaskie J, Miller FD, Tetzlaff W (2020) Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports 15(1): 140–155. https://doi.org/10.1016/j.stemcr.2020.05.017
- Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD (2021) Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 11: 514181. https://doi.org/10.3389/fneur.2020.514181
- Hemati-Gourabi M, Cao T, Romprey MK, Chen M (2022) Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 16: 955598. https://doi.org/10.3389/fnins.2022.955598
- Tamaru T, Kobayakawa K, Saiwai H, Konno D, Kijima K, Yoshizaki S, Hata K, Iura H, Ono G, Haruta Y, Kitade K, Iida KI, Kawaguchi KI, Matsumoto Y, Kubota K, Maeda T, Okada S, Nakashima Y (2023) Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury. Exp Neurol 359: 114264. https://doi.org/10.1016/j.expneurol.2022.114264
- Yang T, Dai YJ, Chen G, Cui S Sen (2020) Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 14: 78. https://doi.org/10.3389/fncel.2020.00078
- Hayashi K, Hashimoto M, Koda M, Naito AT, Murata A, Okawa A, Takahashi K, Yamazaki M (2011) Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model: Laboratory investigation. J Neurosurg Spine 15(6): 582–593. https://doi.org/10.3171/2011.7.SPINE10775
- Zheng X, Wang W (2022) Astrocyte transplantation for repairing the injured spinal cord. J Biomed Res 36(5): 312-320. https://doi.org/10.7555/JBR.36.20220012
- Hastings N, Kuan WL, Osborne A, Kotter MRN (2022) Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 31: 9636897221105499. https://doi.org/10.1177/09636897221105499
- Chang J, Qian Z, Wang B, Cao J, Zhang S, Jiang F, Kong R, Yu X, Cao X, Yang L, Chen H (2023) Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun Signal 21(1): 37. https://doi.org/10.1186/s12964-022-01036-6
- Haas C, Fischer I (2013) Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. J Neurotrauma 30(12): 1035–1052. https://doi.org/10.1089/neu.2013.2915
- Li K, Javed E, Scura D, Hala TJ, Seetharam S, Falnikar A, Richard JP, Chorath A, Maragakis NJ, Wright MC, Lepore AC (2015) Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol 271: 479–492. https://doi.org/10.1016/j.expneurol.2015.07.020
- Lien B V., Tuszynski MH, Lu P (2019) Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol 314: 46–57. https://doi.org/10.1016/j.expneurol.2019.01.006
- Ursavas S, Darici H, Karaoz E (2021) Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res 99(6): 1579–1597. https://doi.org/10.1002/jnr.24817
- Oieni F, Reshamwala R, St John J (2022) Olfactory Ensheathing Cells for Spinal Cord Injury: The Cellular Superpowers for Nerve Repair. Neuroglia 3(4): 139–143. https://doi.org/10.3390/neuroglia3040009
- Li L, Adnan H, Xu B, Wang J, Wang C, Li F, Tang K (2015) Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis. Eur Spine J 24(5): 919–930. https://doi.org/10.1007/s00586-014-3416-6
- Watzlawick R, Rind J, Sena ES, Brommer B, Zhang T, Kopp MA, Dirnagl U, Macleod MR, Howells DW, Schwab JM (2016) Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis. PLoS Biol 14(5): e1002468. https://doi.org/10.1371/journal.pbio.1002468
- Chen H, Tan Q, Xie C, Li C, Chen Y, Deng Y, Gan Y, Zhan W, Zhang Z, Sharma A, Sharma H (2019) Application of olfactory ensheathing cells in clinical treatment of spinal cord injury: Meta-analysis and prospect. J Neurorestoratology 7(2): 70–81. https://doi.org/10.26599/jnr.2019.9040008
- Woodworth CF, Jenkins G, Barron J, Hache N (2019) Intramedullary cervical spinal mass after stem cell transplantation using an olfactory mucosal cell autograft. CMAJ 191(27): 761–764. https://doi.org/10.1503/cmaj.181696
- Williamson TL, Cutler A, Cobb MI, Rahimpour S, Butler ER, Harward SC, Cummings TJ, Friedman AH (2021) Autograft-derived spinal cord mass in the cervical spine following transplantation with olfactory mucosa cells for traumatic spinal cord injury: Case report. J Neurosurg Spine 34(2): 254–258. https://doi.org/10.3171/2020.6.SPINE20251
- Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE (2022) Microglia and Microglia-Like Cells: Similar but Different. Front Cell Neurosci 16: 816439. https://doi.org/10.3389/fncel.2022.816439
- Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG (2022) Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 13: 4096. https://doi.org/10.1038/s41467-022-31797-0
- Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC (2023) Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 32: 9636897231171001. https://doi.org/10.1177/09636897231171001
- Zhang L, Wang Y, Liu T, Mao Y, Peng B (2023) Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neurosci Bull 39(3): 491–502. https://doi.org/10.1007/s12264-022-01013-6
- Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Urushitani M, Kojima H (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Mol Ther 28(1): 254–265. https://doi.org/10.1016/j.ymthe.2019.09.004
- Xu Z, Peng B, Rao Y (2021) Microglia replacement by microglia transplantation (Mr MT) in the adult mouse brain. STAR Protoc 2(3): 100665. https://doi.org/10.1016/j.xpro.2021.100665
- Lammertse DP, Jones LAT, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: Results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50(9): 661–671. https://doi.org/10.1038/sc.2012.39
- Rajabzadeh N, Fathi E, Farahzadi R (2019) Stem cell-based regenerative medicine. Stem Cell Investig 6: 19. https://doi.org/10.21037/sci.2019.06.04
- Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN (2023) Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 6(1): 544. https://doi.org/10.1038/s42003-023-04893-0
- Lee J, Cho Y (2021) Potential roles of stem cell marker genes in axon regeneration. Exp Mol Med 53: 1–7. https://doi.org/10.1038/s12276-020-00553-z
- Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29(12): 1983–1994. https://doi.org/10.1002/stem.767
- Jiang W, Xu J (2020) Immune modulation by mesenchymal stem cells. Cell Prolif 53(1): 12712. https://doi.org/10.1111/cpr.12712
- Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q (2020) Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 11: 439. https://doi.org/10.1038/s41419-020-2620-z
- Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C (2023) Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 14: 1141601. https://doi.org/10.3389/fimmu.2023.1141601
- Shroff G (2016) Human Embryonic Stem Cell Therapy in Chronic Spinal Cord Injury: A Retrospective Study. Clin Transl Sci 9(3): 168–175. https://doi.org/10.1111/cts.12394
- Bellák T, Fekécs Z, Török D, Táncos Z, Nemes C, Tézsla Z, Gál L, Polgári S, Kobolák J, Dinnyés A, Nógrádi A, Pajer K (2020) Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: Modulation of the lesion microenvironment. Sci Rep 10: 22414. https://doi.org/10.1038/s41598-020-79846-2
- Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020) Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 10: 112. https://doi.org/10.1186/s13578-020-00475-3
- Son D, Zheng J, Kim IY, Kang PJ, Park K, Priscilla L, Hong W, Yoon BS, Park G, Yoo JE, Song G, Lee JB, You S (2023) Human induced neural stem cells support functional recovery in spinal cord injury models. Exp Mol Med 55: 1182–1192. https://doi.org/10.1038/s12276-023-01003-2
- Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G (2020) Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020: 2853650. https://doi.org/10.1155/2020/2853650
- Kossow S (2022) Creating a United Front: Harmonizing the United States Regulatory Policies Surrounding Human Embryonic Stem Cell Research. SMU Sci Technol Law Rev 25. https://doi.org/10.25172/smustlr.25.2.7
- Haworth R, Sharpe M (2021) Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 49(7): 1308–1316. https://doi.org/10.1177/0192623320918241
- Wu JX, Xia T, She LP, Lin S, Luo XM (2022) Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 31: 9636897221083252. https://doi.org/10.1177/09636897221083252
- Yang JR, Liao CH, Pang CY, Huang LLH, Chen YL, Shiue YL, Chen LR (2013) Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model. Cytotherapy 15(2): 201–208. https://doi.org/10.1016/j.jcyt.2012.09.001
- Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S (2016) Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model. Cell Transplant 25(3): 593–607. https://doi.org/10.3727/096368915X689460
- Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN (2021) Human Embryonic Stem Cell–derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 30: 963689720988245. https://doi.org/10.1177/0963689720988245
- Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H (2022) Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res Ther 13(1): 366. https://doi.org/10.1186/s13287-022-03054-0
- Costela-ruiz VJ, Melguizo-rodríguez L, Bellotti C, Illescas-montes R, Stanco D, Arciola CR, Lucarelli E (2022) Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int J Mol Sci 23(11): 6356. https://doi.org/10.3390/ijms23116356
- Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L (2022) Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther 13(1): 429. https://doi.org/10.1186/s13287-022-02985-y
- Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L (2023) Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 29: 16–35. https://doi.org/10.1016/j.bioactmat.2023.06.013
- Jiang F, Zhou H, Cheng Y, He Z, Meng P, Sun K, Wang P, Han X, Wang L, Yang M, Jiang N, Liu Y, Yuan C, Yang Q, An Y (2022) Various detailed characteristics of a new enhanced neurotrophic factor secreting rat derived bone marrow mesenchymal stem cells and its preliminary application in rat models of ischemic stroke. Exp Cell Res 416(1): 113140. https://doi.org/10.1016/j.yexcr.2022.113140
- Peshkova M, Korneev A, Suleimanov S, Vlasova II, Svistunov A, Kosheleva N, Timashev P (2023) MSCs’ conditioned media cytokine and growth factor profiles and their impact on macrophage polarization. Stem Cell Res Ther 14(1): 142. https://doi.org/10.1186/s13287-023-03381-w
- Sari MI, Jusuf NK, Munir D, Putra A, Bisri T, Ilyas S, Farhat F, Muhar AM, Rusda M, Amin MM (2023) The Role of Mesenchymal Stem Cell Secretome in the Inflammatory Mediators and the Survival Rate of Rat Model of Sepsis. Biomedicines 11(8): 2325. https://doi.org/10.3390/biomedicines11082325
- Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, Chen B, Jiang X, Yun C, Han W, Zhao C, Cheng S, Zhang S, Dai J (2017) Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26(5): 891–900. https://doi.org/10.3727/096368917X695038
- Cartarozzi LP, Perez M, Fernandes GG, Chiarotto GB, Luzo ÂCM, Campos AC, Kirchhoff F, de Oliveira ALR (2022) Neuroprotection and gliosis attenuation by intravenous application of human mesenchymal stem cells (hMSC) following ventral root crush in mice. Mol Cell Neurosci 118: 103694. https://doi.org/10.1016/j.mcn.2021.103694
- Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D (2019) Mesenchymal stem cells for spinal cord injury: Current options limitations, and future of cell therapy. Int J Mol Sci 20(11): 2698. https://doi.org/10.3390/ijms20112698
- Ullah M, Liu DD, Thakor AS (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 15: 421–438. https://doi.org/10.1016/j.isci.2019.05.004
- Kim M, Kim KH, Song SU, Yi TG, Yoon SH, Park SR, Choi BH (2018) Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 12(2): 1034–1045. https://doi.org/10.1002/term.2425
- Gu C, Li H, Wang C, Song X, Ding Y, Zheng M, Liu W, Chen Y, Zhang X, Wang L (2017) Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neurosci Lett 636: 282–289. https://doi.org/10.1016/j.neulet.2016.11.032
- Zhou YJ, Liu JM, Wei SM, Zhang YH, Qu ZH, Chen SB (2015) Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation. Neural Regen Res 10(8): 1305–1311. https://doi.org/10.4103/1673-5374.162765
- Han D, Wu C, Xiong Q, Zhou L, Tian Y (2015) Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury. Cell Biochem Biophys 71(3): 1341–1347. https://doi.org/10.1007/s12013-014-0354-1
- Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L (2022) Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells from Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 15: 768711. https://doi.org/10.3389/fncel.2021.768711
- Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M (2016) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7: 36. https://doi.org/10.1186/s13287-016-0295-2
- Zhilai Z, Biling M, Sujun Q, Chao D, Benchao S, Shuai H, Shun Y, Hui Z (2016) Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res 1642: 426–435. https://doi.org/10.1016/j.brainres.2016.04.025
- Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, Xie L, Wu Y, Zhang Y, Wang X (2021) Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 7(1): 212. https://doi.org/10.1038/s41420-021-00572-3
- Kim Y, Jo SH, Kim WH, Kweon OK (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 6: 229. https://doi.org/10.1186/s13287-015-0236-5
- Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR (2012) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 70(5): 1238–1247. https://doi.org/10.1227/NEU.0b013e31824387f9
- El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HAMA, El Maadawi ZM, Ewes I, Sabaawy HE (2014) Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant 23(6): 729–745. https://doi.org/10.3727/096368913X664540
- Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, Tapiador N, Sevilla M, Vazquez D, Carballido J, Fernandez C, Rodríguez-Boto G, Ovejero M, Vaquero J, Zurita M, Bonilla C, Rico MA, Aguayo C, Rodríguez A, Martínez P, de la Calle S, Fernández M V., Fernández C, de Reina L, Saab A, Cotua C, Santander XA, Gutiérrez R, Saldaña C, Hassan R, Ortega C, Madrid A, Mariscal M, Marín E, López LF, Pérez A, Ebrat EE, Vaquero M, Martín M, Mayoral I, Canales D, Carballido J, Vazquez D, Serrano R, Saucedo G, Tapiador N, Sevilla M, Cabrera R, Begoña Pérez de Camino MEM, Alarcón A, Naya D, Alonso R, Alamo JR, Romera I, Mourelle I, Sánchez C, Segovia R, Gutiérrez A, Guillo V, del Valle S, Rey P, Mucientes J, Rodríguez B (2018) Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 20(6): 806–819. https://doi.org/10.1016/j.jcyt.2018.03.032
- Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H (2013) Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 15(2): 185–191. https://doi.org/10.1016/j.jcyt.2012.09.005
- Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y (2014) Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 12: 253. https://doi.org/10.1186/s12967-014-0253-7
- Yang Y, Pang M, Du C, Liu ZY, Chen ZH, Wang NX, Zhang LM, Chen YY, Mo J, Dong JW, Xie PG, Wang QY, Liu B, Rong LM (2021) Repeated subarachnoid administrations of allogeneic human umbilical cord mesenchymal stem cells for spinal cord injury: A phase 1/2 pilot study. Cytotherapy 23(1): 57–64. https://doi.org/10.1016/j.jcyt.2020.09.012
- Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG (2016) Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J Spinal Cord Med 39(6): 655–664. https://doi.org/10.1179/2045772315Y.0000000048
- de Araújo LT, Macêdo CT, Damasceno PKF, Das Neves ÍGC, de Lima CS, Santos GC, de Santana TA, Sampaio GL de A, Silva DN, Villarreal CF, Chaguri AC de C, da Silva CG, Mota AC de A, Badaró R, Dos Santos RR, Soares MBP (2022) Clinical Trials Using Mesenchymal Stem Cells for Spinal Cord Injury: Challenges in Generating Evidence. Cells 11(6): 1019. https://doi.org/10.3390/cells11061019
- Liu DD, He JQ, Sinha R, Eastman AE, Toland AM, Morri M, Neff NF, Vogel H, Uchida N, Weissman IL (2023) Purification and characterization of human neural stem and progenitor cells. Cell 186(6): 1179–1194. https://doi.org/10.1016/j.cell.2023.02.017
- Suzuki H, Imajo Y, Funaba M, Nishida N, Sakamoto T, Sakai T (2022) Current Concepts of Neural Stem/Progenitor Cell Therapy for Chronic Spinal Cord Injury. Front Cell Neurosci 15: 794692. https://doi.org/10.3389/fncel.2021.794692
- Gilbert EAB, Lakshman N, Lau KSK, Morshead CM (2022) Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 11(5): 846. https://doi.org/10.3390/cells11050846
- Liu Y, Tan B, Wang L, Long Z, Li Y, Liao W, Wu Y (2015) Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int J Clin Exp Pathol 8(4): 3835–3842.
- Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X (2020) Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 20(6): 148. https://doi.org/10.3892/etm.2020.9277
- Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S (2020) Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology. Front Cell Neurosci 14: 590960. https://doi.org/10.3389/fncel.2020.590960
- Suzuki H, Ahuja CS, Salewski RP, Li L, Satkunendrarajah K, Nagoshi N, Shibata S, Fehlings MG (2017) Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury. PLoS One 12(8): 0182339. https://doi.org/10.1371/journal.pone.0182339
- Sankavaram SR, Hakim R, Covacu R, Frostell A, Neumann S, Svensson M, Brundin L (2019) Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery. Stem Cell Rep 12(5): 950–966. https://doi.org/10.1016/j.stemcr.2019.03.013
- Li X, Peng Z, Long L, Lu X, Zhu K, Tuo Y, Chen N, Zhao X, Wang L, Wan Y (2020) Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury. Exp Mol Med 52(12): 2020–2033. https://doi.org/10.1038/s12276-020-00536-0
- Li T, Zhao X, Duan J, Cui S, Zhu K, Wan Y, Liu S, Peng Z, Wang L (2021) Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med 22(1): 711. https://doi.org/10.3892/etm.2021.10143
- Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, Aarabi B, Hsieh J, Gant K (2019) Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma 36(6): 891–902. https://doi.org/10.1089/neu.2018.5843
- Silvestro S, Bramanti P, Trubiani O, Mazzon E (2020) Stem cells therapy for spinal cord injury: An overview of clinical trials. Int J Mol Sci 21(2): 659. https://doi.org/10.3390/ijms21020659
- Takahashi K, Yamanaka S (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126(4): 663–676. https://doi.org/10.1016/j.cell.2006.07.024
- Huang P, Zhu J, Liu Y, Liu G, Zhang R, Li D, Pei D, Zhu P (2021) Identification of New Transcription Factors that Can Promote Pluripotent Reprogramming. Stem Cell Rev Reports 17(6): 2223–2234. https://doi.org/10.1007/s12015-021-10220-z
- Bell S, Hettige NC, Silveira H, Peng H, Wu H, Jefri M, Antonyan L, Zhang Y, Zhang X, Ernst C (2019) Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an Effective Model of Forebrain Neural Progenitor Cells and Mature Neurons. Bio-protocol 9(5): 3188. https://doi.org/10.21769/BioProtoc.3188
- Madrid M, Sumen C, Aivio S, Saklayen N (2021) Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges. Curr Protoc 1(3): 88. https://doi.org/10.1002/cpz1.88
- Kong D, Feng B, Amponsah AE, He J, Guo R, Liu B, Du X, Liu X, Zhang S, Lv F, Ma J, Cui H (2021) hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice. Stem Cell Res Ther 12: 172. https://doi.org/10.1186/s13287-021-02217-9
- Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q (2022) Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 11(17): 2765. https://doi.org/10.3390/cells11172765
- Attwood SW, Edel MJ (2019) ips-cell technology and the problem of genetic instability–can it ever be safe for clinical use? J Clin Med 8(3): 288. https://doi.org/10.3390/jcm8030288
- Iida T, Iwanami A, Sanosaka T, Kohyama J, Miyoshi H, Nagoshi N, Kashiwagi R, Toyama Y, Matsumoto M, Nakamura M, Okano H (2017) Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells. Stem Cells 35(5): 1316–1327. https://doi.org/10.1002/stem.2581
- Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S (2020) Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 9(1): 121–136. https://doi.org/10.1089/biores.2019.0046
- Bailly A, Milhavet O, Lemaitre JM (2022) RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics 14(2): 317. https://doi.org/10.3390/pharmaceutics14020317
- Kajikawa K, Imaizumi K, Shinozaki M, Shibata S, Shindo T, Kitagawa T, Shibata R, Kamata Y, Kojima K, Nagoshi N, Matsumoto M, Nakamura M, Okano H (2020) Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol Brain 13: 120. https://doi.org/10.1186/s13041-020-00662-w
- Sugai K, Sumida M, Shofuda T, Yamaguchi R, Tamura T, Kohzuki T, Abe T, Shibata R, Kamata Y, Ito S, Okubo T, Tsuji O, Nori S, Nagoshi N, Yamanaka S, Kawamata S, Kanemura Y, Nakamura M, Okano H (2021) First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen Ther 18: 321–333. https://doi.org/10.1016/j.reth.2021.08.005
- Kawai M, Nagoshi N, Okano H, Nakamura M (2023) A review of regenerative therapy for spinal cord injury using human iPS cells. North Am Spine Soc J 13: 100184. https://doi.org/10.1016/j.xnsj.2022.100184
- Chen H, Jin X, Li T, Ye Z (2022) Brain organoids: Establishment and application. Front Cell Dev Biol 10: 1029873. https://doi.org/10.3389/fcell.2022.1029873
- Eichmüller OL, Knoblich JA (2022) Human cerebral organoids – a new tool for clinical neurology research. Nat Rev Neurol 18(11): 661–680. https://doi.org/10.1038/s41582-022-00723-9
- Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36(5): 432–441. https://doi.org/10.1038/nbt.4127
- Daviaud N, Friedel RH, Zou H (2018) Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5(6): ENEURO.0219-18.2018. https://doi.org/10.1523/ENEURO.0219-18.2018
- Wilson MN, Thunemann M, Liu X, Lu Y, Puppo F, Adams JW, Kim JH, Ramezani M, Pizzo DP, Djurovic S, Andreassen OA, Mansour AAF, Gage FH, Muotri AR, Devor A, Kuzum D (2022) Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat Commun 13(1): 7945. https://doi.org/10.1038/s41467-022-35536-3
- Jgamadze D, Lim JT, Zhang Z, Harary PM, Germi J, Mensah-Brown K, Adam CD, Mirzakhalili E, Singh S, Gu J Ben, Blue R, Dedhia M, Fu M, Jacob F, Qian X, Gagnon K, Sergison M, Fruchet O, Rahaman I, Wang H, Xu F, Xiao R, Contreras D, Wolf JA, Song H, Ming G li, Chen HCI (2023) Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell 30(2): 137–152. https://doi.org/10.1016/j.stem.2023.01.004
- Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, Li MY, Birey F, Yang X, Saw NL, Baker SW, Amin ND, Kulkarni S, Mudipalli R, Cui B, Nishino S, Grant GA, Knowles JK, Shamloo M, Huguenard JR, Deisseroth K, Pașca SP (2022) Maturation and circuit integration of transplanted human cortical organoids. Nature 610(7931): 319–326. https://doi.org/10.1038/s41586-022-05277-w
- Cao SY, Yang D, Huang ZQ, Lin YH, Wu HY, Chang L, Luo CX, Xu Y, Liu Y, Zhu DY (2023) Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. NPJ Regen Med 8(1): 27. https://doi.org/10.1038/s41536-023-00301-7
- Jin C, Wu Y, Zhang H, Xu B, Liu W, Ji C, Li P, Chen Z, Chen B, Li J, Wu X, Jiang P, Hu Y, Xiao Z, Zhao Y, Dai J (2023) Spinal cord tissue engineering using human primary neural progenitor cells and astrocytes. Bioeng Transl Med 8(2): 10448. https://doi.org/10.1002/btm2.10448
- Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, Chung S, Shu Y, Shao Z (2023) Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng 7(3): 253–269. https://doi.org/10.1038/s41551-022-00963-6
- Wang Z, Zhao H, Tang X, Meng T, Khutsishvili D, Xu B, Ma S (2022) CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research 3: 2022:9832128. https://doi.org/10.34133/2022/9832128
- Wertheim L, Edri R, Goldshmit Y, Kagan T, Noor N, Ruban A, Shapira A, Gat-Viks I, Assaf Y, Dvir T (2022) Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCs-Derived 3D Neuronal Networks. Adv Sci 9(11): 2105694. https://doi.org/10.1002/advs.202105694
- Kitahara T, Sakaguchi H, Morizane A, Kikuchi T, Miyamoto S, Takahashi J (2020) Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Rep 15(2): 467–481. https://doi.org/10.1016/j.stemcr.2020.06.016
- Xue W, Li B, Liu H, Xiao Y, Ren L, Li H, Shao Z (2023) Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. iScience 26(1): 105898. https://doi.org/10.1016/j.isci.2022.105898
- Han Y, King M, Tikhomirov E, Barasa P, Souza CDS, Lindh J, Baltriukiene D, Ferraiuolo L, Azzouz M, Gullo MR, Kozlova EN (2022) Towards 3D Bioprinted Spinal Cord Organoids. Int J Mol Sci 23(10): 5788. https://doi.org/10.3390/ijms23105788
- Farag MM (2023) Recent trends on biomaterials for tissue regeneration applications: Review. J Mater Sci 58: 527–558. https://doi.org/10.1007/s10853-022-08102-x
- Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG (2023) The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 24(1): 816. https://doi.org/10.3390/ijms24010816
- Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y (2022) Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 17: 29–48. https://doi.org/10.1016/j.bioactmat.2022.01.011
- Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ (2021) Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 144: 104973. https://doi.org/10.1016/j.neuint.2021.104973
- Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H (2022) Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. Biomed Res Int 8: 2022:5079153. https://doi.org/10.1155/2022/5079153
- Funnell JL, Balouch B, Gilbert RJ (2019) Magnetic composite biomaterials for neural regeneration. Front Bioeng Biotechnol 7: 179. https://doi.org/10.3389/fbioe.2019.00179
- Chen S, Zhao Y, Yan X, Zhang L, Li G, Yang Y (2019) PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res Part A 107(6): 1273–1283. https://doi.org/10.1002/jbm.a.36637
- Kapusetti G, More N, Choppadandi M (2019) Introduction to ideal characteristics and advanced biomedical applications of biomaterials. In: Biomedical Engineering and its Applications in Healthcare. 171–204. https://doi.org/10.1007/978-981-13-3705-5_8
- He W, Zhang X, Li X, Ju D, Mao T, Lu Y, Gu Y, Qi L, Wang Q, Wu Q, Dong C (2022) A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells. J Mater Chem B 10(30): 5753–5764. https://doi.org/10.1039/d2tb00792d
- Shen H, Xu B, Yang C, Xue W, You Z, Wu X, Ma D, Shao D, Leong K, Dai J (2022) A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 280: 121279. https://doi.org/10.1016/j.biomaterials.2021.121279
- Liu S, Xie YY, Wang L Di, Tai CX, Chen D, Mu D, Cui YY, Wang B (2021) A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 16(11): 2284–2292. https://doi.org/10.4103/1673-5374.310698
- Yousefifard M, Maleki SN, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, Hosseini M, Rahimi-Movaghar V (2020) A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: A systematic review and meta-analysis. J Neurosurg Spine 32(2): 269–284. https://doi.org/10.3171/2019.8.SPINE19201
- Fang Y, Guo Y, Liu T, Xu R, Mao S, Mo X, Zhang T, Ouyang L, Xiong Z, Sun W (2022) Advances in 3D Bioprinting. Chinese J Mech Eng Addit Manuf Front 1(1): 100011. https://doi.org/10.1016/j.cjmeam.2022.100011
- Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, Zhang Z (2021) 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272: 120771. https://doi.org/10.1016/j.biomaterials.2021.120771
- Szymoniuk M, Mazurek M, Dryla A, Kamieniak P (2023) The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury – A systematic review of preclinical in vivo studies. Exp Neurol 363: 114366. https://doi.org/10.1016/j.expneurol.2023.114366
- Wang J, Kong X, Li Q, Li C, Yu H, Ning G, Xiang Z, Liu Y, Feng S (2021) The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury. Biofabrication 13(4). https://doi.org/10.1088/1758-5090/ac0c5f
- Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, Graham L, Lu P, Sakamoto J, Marsala M, Chen S, Tuszynski MH (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25: 263-269. https://doi.org/10.1038/s41591-018-0296-z
- Gao C, Li Y, Liu X, Huang J, Zhang Z (2023) 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J 451(3): 138788. https://doi.org/10.1016/j.cej.2022.138788
- Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M (2020) Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 8: 598607. https://doi.org/10.3389/fbioe.2020.598607
- Cao J, Wu J, Mu J, Feng S, Gao J (2021) The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci 9(13): 4591–4606. https://doi.org/10.1039/d1bm00361e
- Luo Y, Xue F, Liu K, Li B, Fu C, Ding J (2021) Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Mater Des 201: 109484. https://doi.org/10.1016/j.matdes.2021.109484
- Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T (2023) Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 24(3): 2528. https://doi.org/10.3390/ijms24032528
- Liu H, Feng Y, Che S, Guan L, Yang X, Zhao Y, Fang L, Zvyagin A V, Lin Q (2023) An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 24(1): 86–97. https://doi.org/10.1021/acs.biomac.2c00920
- Dai Y, Wang W, Zhou X, Linli L, Tang Y, Shao M, Lyu F (2023) Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS Appl Nano Mater 6(7): 5980–5993. https://doi.org/10.1021/acsanm.3c00374
- Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, Oliveira JM, Koffler J, Collins MN (2022) Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 26(1): 63. https://doi.org/10.1186/s40824-022-00310-5
- Li Q, Shao X, Dai X, Guo Q, Yuan B, Liu Y, Jiang W (2022) Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Mater 14: 14. https://doi.org/10.1038/s41427-022-00362-y
- Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q (2022) A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 15: 103–119. https://doi.org/10.1016/j.bioactmat.2021.11.032
- Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L (2021) An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater 6(12): 4816–4829. https://doi.org/10.1016/j.bioactmat.2021.05.022
- Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z (2023) Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 220: 102375. https://doi.org/10.1016/j.pneurobio.2022.102375
- Park HH, Kim YM, Anh Hong LT, Kim HS, Kim SH, Jin X, Hwang DH, Kwon MJ, Song SC, Kim BG (2022) Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration. Biomaterials 284: 121526. https://doi.org/10.1016/j.biomaterials.2022.121526
- Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H (2023) Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 17: 1211066. https://doi.org/10.3389/fnins.2023.1211066
- Li L, Xiao B, Mu J, Zhang Y, Zhang C, Cao H, Chen R, Patra HK, Yang B, Feng S, Tabata Y, Slater NKH, Tang J, Shen Y, Gao J (2019) A MnO2 Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair via Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano 13(12): 14283–14293. https://doi.org/10.1021/acsnano.9b07598
- Zhang M, Bai Y, Xu C, Lin J, Jin JK, Xu A, Lou JN, Qian C, Yu W, Wu Y, Qi Y, Tao H (2021) Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv 28(1): 2548–2561. https://doi.org/10.1080/10717544.2021.2009937
- Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, Chen X, Guo J, Cheng H, Xia L, Lu W, Zhang C, Xie J, Wang H, Chai R (2022) GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology 20: 420. https://doi.org/10.1186/s12951-022-01669-2
- Zhao X, Lu X, Li K, Song S, Luo Z, Zheng C, Yang C, Wang X, Wang L, Tang Y, Wang C, Liu J (2023) Double crosslinked biomimetic composite hydrogels containing topographical cues and WAY-316606 induce neural tissue regeneration and functional recovery after spinal cord injury. Bioact Mater 24: 331–345. https://doi.org/10.1016/j.bioactmat.2022.12.024
- Xu Y, Zhou J, Liu C, Zhang S, Gao F, Guo W, Sun X, Zhang C, Li H, Rao Z, Qiu S, Zhu Q, Liu X, Guo X, Shao Z, Bai Y, Zhang X, Quan D (2021) Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Biomaterials 268: 120596. https://doi.org/10.1016/j.biomaterials.2020.120596
- Chen Z, Wang L, Chen C, Sun J, Luo J, Cui W, Zhu C, Zhou X, Liu X, Yang H, Shi Q (2022) NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair. NPG Asia Mater 14: 20. https://doi.org/10.1038/s41427-022-00368-6
- Zhang J, Cheng T, Chen Y, Gao F, Guan F, Yao M (2020) A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice. Biomed Mater 15(3): 035020. https://doi.org/10.1088/1748-605X/ab785f
- Yao M, Li J, Zhang J, Ma S, Wang L, Gao F, Guan F (2021) Dual-enzymatically cross-linked gelatin hydrogel enhances neural differentiation of human umbilical cord mesenchymal stem cells and functional recovery in experimental murine spinal cord injury. J Mater Chem B 9(2): 440–452. https://doi.org/10.1039/d0tb02033h
- Baneshi N, Moghadas BK, Adetunla A, Yusof MYPM, Dehghani M, Khandan A, Saber-Samandari S, Toghraie D (2021) Investigation the mechanical properties of a novel multicomponent scaffold coated with a new bio-nanocomposite for bone tissue engineering: Fabrication, simulation and characterization. J Mater Res Technol 15: 5526-5539. https://doi.org/10.1016/j.jmrt.2021.10.107
- Li Y, Dong T, Li Z, Ni S, Zhou F, Alimi OA, Chen S, Duan B, Kuss M, Wu S (2022) Review of advances in electrospinning-based strategies for spinal cord regeneration. Mater Today Chem 24: 100944. https://doi.org/10.1016/j.mtchem.2022.100944
- Cao S, Bo R, Zhang Y (2023) Polymeric Scaffolds for Regeneration of Central/Peripheral Nerves and Soft Connective Tissues. Adv Nano Biomed Res 3(3): 2200147. https://doi.org/10.1002/anbr.202200147
- Agrawal L, Saidani M, Guillaud L, Terenzio M (2021) Development of 3D culture scaffolds for directional neuronal growth using 2-photon lithography. Mater Sci Eng C 131: 112502. https://doi.org/10.1016/j.msec.2021.112502
- Züger F, Marsano A, Poggio M, Gullo MR (2022) Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Adv Nano Biomed Res 2(2): 2100108. https://doi.org/10.1002/anbr.202100108
- Kaplan B, Merdler U, Szklanny AA, Redenski I, Guo S, Bar-Mucha Z, Michael N, Levenberg S (2020) Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials 251: 120062. https://doi.org/10.1016/j.biomaterials.2020.120062
- Chen C, Tang J, Gu Y, Liu L, Liu X, Deng L, Martins C, Sarmento B, Cui W, Chen L (2019) Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Adv Funct Mater 29(4): 1806899. https://doi.org/10.1002/adfm.201806899
- Peressotti S, Koehl GE, Goding JA, Green RA (2021) Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 7(9): 4136–4163. https://doi.org/10.1021/acsbiomaterials.1c00030
- Gelain F, Luo Z, Rioult M, Zhang S (2021) Self-assembling peptide scaffolds in the clinic. NPJ Regen Med 6(1): 9. https://doi.org/10.1038/s41536-020-00116-w
- Guo J, Leung KKG, Su H, Yuan Q, Wang L, Chu TH, Zhang W, Pu JKS, Ng GKP, Wong WM, Dai X, Wu W (2009) Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Biol Med 5(3): 345–351. https://doi.org/10.1016/j.nano.2008.12.001
- Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8): 2005-2016. https://doi.org/10.1016/j.biomaterials.2012.11.043
- Ye JC, Qin Y, Wu YF, Wang P, Tang Y, Huang L, Ma MJ, Zeng YS, Shen HY (2016) Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats. Spinal Cord 54(11): 933–941. https://doi.org/10.1038/sc.2016.36
- Ando K, Imagama S, Ito Z, Kobayashi K, Hida T, Nakashima H, Ito K, Tsushima M, Ishikawa Y, Matsumoto A, Nishida K, Nishida Y, Ishiguro N (2016) Self-assembling peptide reduces glial scarring, attenuates posttraumatic inflammation, and promotes neurite outgrowth of spinal motor neurons. Spine (Phila Pa 1976) 41(20): 1201–1207. https://doi.org/10.1097/BRS.0000000000001611
- Chakraborty A, Ciciriello AJ, Dumont CM, Pearson RM (2021) Nanoparticle-Based Delivery to Treat Spinal Cord Injury – a Mini-review. AAPS PharmSciTech 22(3): 101. https://doi.org/10.1208/s12249-021-01975-2
- Usmani S, Biagioni AF, Medelin M, Scaini D, Casani R, Aurand ER, Padro D, Egimendia A, Cabrer PR, Scarselli M, De Crescenzi M, Prato M, Ballerini L (2020) Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. Proc Natl Acad Sci U S A 117(41): 25212–25218. https://doi.org/10.1073/pnas.2005708117
- Yang L, Chueng STD, Li Y, Patel M, Rathnam C, Dey G, Wang L, Cai L, Lee KB (2018) A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat Commun 9(1): 3147. https://doi.org/10.1038/s41467-018-05599-2
- Wang XH, Tang XC, Li X, Qin JZ, Zhong WT, Wu P, Zhang F, Shen YX, Dai TT (2021) Implantation of nanofibrous silk scaffolds seeded with bone marrow stromal cells promotes spinal cord regeneration (6686 words). Artif Cells Nanomed Biotechnol 49(1): 699–708. https://doi.org/10.1080/21691401.2021.2013250
- Sun X, Zhang C, Xu J, Zhai H, Liu S, Xu Y, Hu Y, Long H, Bai Y, Quan D (2020) Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury. ACS Biomater Sci Eng 49(1): 699–708. https://doi.org/10.1021/acsbiomaterials.0c00023
- Raynald R, Shu B, Liu X Bin, Zhou JF, Huang H, Wang JY, Sun XD, Qin C, An YH (2019) Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther 25(9): 951-964. https://doi.org/10.1111/cns.13135
- Song YH, Agrawal NK, Griffin JM, Schmidt CE (2019) Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 148: 38–59. https://doi.org/10.1016/j.addr.2018.12.011
- Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S (2023) Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 18: 100524. https://doi.org/10.1016/j.mtbio.2022.100524
- Boyd BJ, Galle A, Daglas M, Rosenfeld J V., Medcalf R (2015) Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target 23(9): 847–853. https://doi.org/10.3109/1061186X.2015.1034280
- Wang XJ, Peng CH, Zhang S, Xu XL, Shu GF, Qi J, Zhu YF, Xu DM, Kang XQ, Lu KJ, Jin FY, Yu RS, Ying XY, You J, Du YZ, Ji JS (2019) Polysialic-Acid-Based Micelles Promote Neural Regeneration in Spinal Cord Injury Therapy. Nano Lett 19(2): 829–838. https://doi.org/10.1021/acs.nanolett.8b04020
- Park J, Zhang Y, Saito E, Gurczynski SJ, Moore BB, Cummings BJ, Anderson AJ, Shea LD (2019) Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 116(30): 14947–14954. https://doi.org/10.1073/pnas.1820276116
- Lin S, Zhao H Sen, Xu C, Zhou ZP, Wang DH, Chen SR, Mei XF (2022) Bioengineered Zinc Oxide Nanoparticle-Loaded Hydrogel for Combinative Treatment of Spinal Cord Transection. Front Bioeng Biotechnol 9: 796361. https://doi.org/10.3389/fbioe.2021.796361
- Liu W, Luo Y, Ning C, Zhang W, Zhang Q, Zou H, Fu C (2021) Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury. J Nanobiotechnol 19(1): 286. https://doi.org/10.1186/s12951-021-01031-y
- Yang B, Wang PB, Mu N, Ma K, Wang S, Yang CY, Huang ZB, Lai Y, Feng H, Yin GF, Chen TN, Hu CS (2021) Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen Res 16(9): 1829–1835. https://doi.org/10.4103/1673-5374.306095
- Rauti R, Secomandi N, Martín C, Bosi S, Severino FPU, Scaini D, Prato M, Vázquez E, Ballerini L (2020) Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Adv Biosyst 4(4): 1900233. https://doi.org/10.1002/adbi.201900233
- García E, Sánchez-Noriega S, González-Pacheco G, González-Vázquez AN, Ibarra A, Rodríguez-Barrera R (2023) Recent advances in the combination of cellular therapy with stem cells and nanoparticles after a spinal cord injury. Front Neurol 14: 1127878. https://doi.org/10.3389/fneur.2023.1127878
- Zeraatpisheh Z, Mirzaei E, Nami M, Alipour H, Mahdavipour M, Sarkoohi P, Torabi S, Azari H, Aligholi H (2021) Local delivery of fingolimod through PLGA nanoparticles and PuraMatrix-embedded neural precursor cells promote motor function recovery and tissue repair in spinal cord injury. Eur J Neurosci 54(4): 5620–5637. https://doi.org/10.1111/ejn.15391
- Wang D, Wang K, Liu Z, Wang Z, Wu H (2021) Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells After Spinal Cord Injury. Neurotox Res 39(2): 456–466. https://doi.org/10.1007/s12640-020-00304-y
- Kim KD, Lee KS, Coric D, Chang JJ, Harrop JS, Theodore N, Toselli RM (2021) A study of probable benefit of a bioresorbable polymer scaffold for safety and neurological recovery in patients with complete thoracic spinal cord injury: 6-month results from the INSPIRE study. JNeurosurg Spine 34(5): 808–817. https://doi.org/10.3171/2020.8.SPINE191507
- Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, Han G, Yin N, Jiang X, Zhao C, Cheng S, Wang Z, Chen Y, Chen Q, Song K, Zhang Z, Niu J, Wang L, Shi Q, Chen L, Yang H, Hou S, Zhang S, Dai J (2022) Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci China Life Sci 65(5): 909–926. https://doi.org/10.1007/s11427-021-1985-5
- Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S (2020) Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 15(9): 1686–1700. https://doi.org/10.4103/1673-5374.276340
- Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou Y, Dai J, Chu T (2020) NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. Cell Transplant 29: 963689720950637. https://doi.org/10.1177/0963689720950637
- Rahmani F, Atabaki R, Behrouzi S, Mohamadpour F, Kamali H (2023) The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 631: 122484. https://doi.org/10.1016/j.ijpharm.2022.122484
- Hu C, Yang L, Wang Y (2022) Recent advances in smart-responsive hydrogels for tissue repairing. MedComm – Biomater Appl 1(2): 23. https://doi.org/10.1002/mba2.23
- Hoque J, Sangaj N, Varghese S (2019) Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 19(1): 1800259. https://doi.org/10.1002/mabi.201800259
- Zheng XQ, Huang JF, Lin JL, Zhu YX, Wang MQ, Guo ML, Zan XJ, Wu AM (2021) Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury. Colloids Surf B Biointerfaces 199: 11153. https://doi.org/10.1016/j.colsurfb.2020.111532
- Wang C, Wang M, Xia K, Wang J, Cheng F, Shi K, Ying L, Yu C, Xu H, Xiao S, Liang C, Li F, Lei B, Chen Q (2021) A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater 6(8): 2523–2534. https://doi.org/10.1016/j.bioactmat.2021.01.029 325.
- Li Y, Wang Z, Pei S, Chen R, Li Y, Liang Y, Zhang C, Wang L, Dai J, Shi L (2024) Bisphosphonate-Based Hydrogel with pH-Responsive Minocycline Release Inhibits Microglia/Macrophages of M1 Polarization for Spinal Cord Injury Therapy. ACS Materials Lett 6(2): 553–565. https://doi.org/10.1021/acsmaterialslett.3c01126
- Li Y, Yang L, Hu F, Xu J, Ye J, Liu S, Wang L, Zhuo M, Ran B, Zhang H, Ye J, Xiao J (2022) Novel Thermosensitive Hydrogel Promotes Spinal Cord Repair by Regulating Mitochondrial Function. ACS Appl Mater Interfaces 14(22): 25155–25172. https://doi.org/10.1021/acsami.2c04341
- Gu J, Gao B, Zafar H, Chu B, Feng X, Ni Y, Xu L, Bao R (2022) Thermo-sensitive hydrogel combined with SHH expressed RMSCs for rat spinal cord regeneration. Front Bioeng Biotechnol 10: 1001396. https://doi.org/10.3389/fbioe.2022.1001396
- Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C (2023) A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 19: 550–568. https://doi.org/10.1016/j.bioactmat.2022.04.029
Дополнительные файлы
