Динамика экспрессии механочувствительных ионных каналов в постуральной мышце крысы в условиях функциональной разгрузки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При функциональной разгрузке (невесомость, гипокинезия) происходит атония и атрофия постуральных мышц млекопитающих. Есть основания полагать, что кальций-проницаемые механочувствительные каналы могут вносить вклад в развитие мышечной атрофии, вызванной функциональной разгрузкой. Цель исследования состояла в оценке динамики экспрессии ключевых механочувствительных каналов в камбаловидной мышце крысы в условиях функциональной разгрузки. Самцы крыс Вистар подвергались вывешиванию задних конечностей в течение 1, 3, 7 и 14 суток. Экспрессия мРНК Piezo1, TRPC1, TRPC3, TRPC6, TRPM3, TRPM7 и TMEM63B определялась с помощью ПЦР. Содержание белка Piezo1 оценивалось с помощью Вестерн-блоттинга. Экспрессия мРНК Piezo1 временно увеличилась спустя 24 ч разгрузки, но не отличалась от контроля после 3, 7 и 14 суток разгрузки. Снижение содержания белка Piezo1 относительно контроля наблюдалось после 3, 7 и 14 суток функциональной разгрузки. На ранних стадиях разгрузки наблюдалось значительное увеличение экспрессии мРНК TRPC3, TRPM3, TRPM7 и TMEM63B, при этом экспрессия TRPC6 была понижена. Уровень экспрессии мРНК TRPC1 был повышен только после трехсуточной разгрузки. Семисуточная разгрузка не вызвала изменений в экспрессии мРНК TRPC1, TRPC3, TRPM3 и TMEM63B, но привела к повышенной экспрессии TRPM7. После двухнедельной разгрузки в камбаловидной мышце наблюдалось снижение экспрессии мРНК TRPC1, TRPC6, TRPM3 и TMEM63B. Таким образом, на ранней стадии функциональной разгрузки (первые и третьии сутки) наблюдалось транзиторное увеличение экспрессии мРНК Piezo1, TRPC1, TRPC3 и TMEM63B, но на более поздней стадии разгрузки (14 суток) отмечалась пониженная экспрессия TRPC1, TRPC6, TRPM3, TMEM63B на уровне мРНК и Piezo1 на уровне белка.

Полный текст

Доступ закрыт

Об авторах

Н. А. Вильчинская

Институт медико-биологических проблем РАН

Автор, ответственный за переписку.
Email: tmirzoev@yandex.ru
Россия, Москва

Б. С. Шенкман

Институт медико-биологических проблем РАН

Email: tmirzoev@yandex.ru
Россия, Москва

Т. М. Мирзоев

Институт медико-биологических проблем РАН

Email: tmirzoev@yandex.ru
Россия, Москва

Список литературы

  1. Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204 (Pt 18): 3201–3208. https://doi.org/ 10.1242/jeb.204.18.3201
  2. Deane CS, Piasecki M, Atherton PJ (2024) Skeletal muscle immobilisation-induced atrophy: Мechanistic insights from human studies. Clin Sci 138 (12): 741–756. https://doi.org/10.1042/CS20231198
  3. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45 (10): 2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011
  4. Mirzoev TM, Shenkman BS (2023) Mechanosensory Structures in the Mechanotransduction System of Muscle Fibers. J Evol Biochem Physiol 59 (4): 1341–1359. https://doi.org/10.1134/s0022093023040269
  5. Kefauver JM, Ward AB, Patapoutian A (2020) Discoveries in structure and physiology of mechanically activated ion channels. Nature 587 (7835): 567–576. https://doi.org/10.1038/s41586-020-2933-1
  6. Benavides Damm T, Egli M (2014) Calcium's role in mechanotransduction during muscle development. Cell Physiol Biochem 33(2): 249–272. https://doi.org/10.1159/000356667
  7. Michelucci A, Liang C, Protasi F, Dirksen RT (2021) Altered Ca(2+) Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 11(7): 424. https://doi.org/ 10.3390/metabo110704248.
  8. Valentim MA, Brahmbhatt AN, Tupling AR (2022) Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 42(12): BSR20211997. https://doi.org/ 10.1042/BSR20211997
  9. Shenkman BS, Nemirovskaya TL (2008) Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading. J Muscle Res Cell Motil 29(6–8): 221–230. https://doi.org/10.1007/s10974-008-9164-7
  10. Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19(1): 101–106. https://doi.org/10.1038/nm.3019
  11. Hyatt HW, Powers SK (2020) The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 41(14): 994–1008. https://doi.org/ 10.1055/a-1199-7662
  12. Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100(1): 129–135. https://doi.org/10.1152/japplphysiol.00619.2005
  13. Mirzoev TM, Tyganov SA, Petrova IO, Shenkman BS (2019) Acute recovery from disuse atrophy: Тhe role of stretch-activated ion channels in the activation of anabolic signaling in skeletal muscle. Am J Physiol Endocrinol Metab 316(1): 86–95. https://doi.org/10.1152/ajpendo.00261.2018
  14. Tyganov S, Mirzoev T, Shenkman B (2019) An Anabolic Signaling Response of Rat Soleus Muscle to Eccentric Contractions Following Hindlimb Unloading: A Potential Role of Stretch-Activated Ion Channels. Int J Mol Sci 20(5): 1165. https://doi.org/ 10.3390/ijms20051165
  15. Butterfield TA, Best TM (2009) Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise. Med Sci Sports Exerc 41(2): 351–356. https://doi.org/10.1249/MSS.0b013e318187cffa
  16. Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT (2014) Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem Biophys 69(3): 411–419. https://doi.org/10.1007/s12013-013-9812-4
  17. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2): 179–185. https://doi.org/10.1038/ncb1218
  18. Yamaguchi Y, Iribe G, Nishida M, Naruse K (2017) Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Prog Biophys Mol Biol 130(Pt B): 264–272. https://doi.org/10.1016/j.pbiomolbio.2017.06.010
  19. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278(24): 21493-21501. https://doi.org/10.1074/jbc.M300945200
  20. Numata T, Shimizu T, Okada Y (2007) Direct mechano-stress sensitivity of TRPM7 channel. Cell Physiol Biochem 19(1–4): 1–8. https://doi.org/10.1159/000099187
  21. Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vasquez V, Laver DR, Martinac B (2019) Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132(23): jcs238360. https://doi.org/ 10.1242/jcs.238360
  22. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000): 55–60. https://doi.org/10.1126/science.1193270
  23. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388): 176–181. https://doi.org/10.1038/nature10812
  24. Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, Nagao K, Mori M, Mori Y, Ikenouchi J, Suzuki R, Tanaka M, Ohwada T, Aoki J, Kanagawa M, Toda T, Nagata Y, Matsuda R, Takayama Y, Tominaga M, Umeda M (2018) Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat Commun 9(1): 2049. https://doi.org/10.1038/s41467-018-04436-w
  25. Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A (2021) “Time window” effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 233(4): e13702. https://doi.org/ 10.1111/apha.13702.26
  26. Ma N, Chen D, Lee JH, Kuri P, Hernandez EB, Kocan J, Mahmood H, Tichy ED, Rompolas P, Mourkioti F (2022) Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Sci Adv 8(11): eabn0485. https://doi.org/10.1126/sciadv.abn0485
  27. Hirano K, Tsuchiya M, Shiomi A, Takabayashi S, Suzuki M, Ishikawa Y, Kawano Y, Takabayashi Y, Nishikawa K, Nagao K, Umemoto E, Kitajima Y, Ono Y, Nonomura K, Shintaku H, Mori Y, Umeda M, Hara Y (2023) The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Sci Alliance 6(2): e202201783. https://doi.org/ 10.26508/lsa.202201783
  28. Hirata Y, Nomura K, Kato D, Tachibana Y, Niikura T, Uchiyama K, Hosooka T, Fukui T, Oe K, Kuroda R, Hara Y, Adachi T, Shibasaki K, Wake H, Ogawa W (2022) A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy. J Clin Invest 132(10): 1–13. https://doi.org/10.1172/JCI154611
  29. Chen X, Wang N, Liu JW, Zeng B, Chen GL (2023) TMEM63 mechanosensitive ion channels: Activation mechanisms, biological functions and human genetic disorders. Biochem Biophys Res Commun 683: 149111. https://doi.org/10.1016/j.bbrc.2023.10.043
  30. Zhao X, Yan X, Liu Y, Zhang P, Ni X (2016) Co-expression of mouse TMEM63A, TMEM63B and TMEM63C confers hyperosmolarity activated ion currents in HEK293 cells. Cell Biochem Funct 34(4): 238–241. https://doi.org/10.1002/cbf.3185
  31. Murthy SE, Dubin AE, Whitwam T, Jojoa-Cruz S, Cahalan SM, Mousavi SAR, Ward AB, Patapoutian A (2018) OSCA/TMEM63 are an Evolutionarily Conserved Family of Mechanically Activated Ion Channels. Elife 7: e41844. https://doi.org/ 10.7554/eLife.41844
  32. Zheng W, Rawson S, Shen Z, Tamilselvan E, Smith HE, Halford J, Shen C, Murthy SE, Ulbrich MH, Sotomayor M, Fu TM, Holt JR (2023) TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels. Neuron 111(20): 3195–3210. https://doi.org/ 10.1016/j.neuron.2023.07.006
  33. Novikov VE, Ilyin EA (1981) Age-related reactions of rat bones to their unloading. Aviat Space Environ Med 52(9): 551–553.
  34. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: Тechnical aspects. J Appl Physiol 92(4): 1367–1377. https://doi.org/10.1152/japplphysiol.00969.2001
  35. Mirzoev TM, Tyganov SA, Shenkman BS (2017) Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle. Muscle Nerve 55(3): 393–399. https://doi.org/10.1002/mus.25235
  36. Tyganov SA, Mochalova EP, Melnikov IY, Vikhlyantsev IM, Ulanova AD, Sharlo KA, Mirzoev TM, Shenkman BS (2021) NOS-dependent effects of plantar mechanical stimulation on mechanical characteristics and cytoskeletal proteins in rat soleus muscle during hindlimb suspension. FASEB J 35(10): e21905. https://doi.org/10.1096/fj.202100783R
  37. Sander H, Wallace S, Plouse R, Tiwari S, Gomes AV (2019) Ponceau S waste: Ponceau S staining for total protein normalization. Anal Biochem 575: 44–53. https://doi.org/10.1016/j.ab.2019.03.010
  38. Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87(1): 386–390. https://doi.org/10.1152/jappl.1999.87.1.386
  39. Ingalls CP, Wenke JC, Armstrong RB (2001) Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles. Aviat Space Environ Med 72(5): 471–476.
  40. Mukhina AM, Altaeva EG, Nemirovskaya TL, Shenkman BS (2008) The role of L-type calcium channels in the accumulation of Ca2+ in soleus muscle fibers in the rat and changes in the ratio of myosin and serca isoforms in conditions of gravitational unloading. Neurosci Behav Physiol 38(2): 181–188. https://doi.org/10.1007/s11055-008-0027-x
  41. Enns DL, Belcastro AN (2006) Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting. Can J Physiol Pharmacol 84(6): 601–609. https://doi.org/10.1139/y06-013
  42. Mirzoev TM, Shenkman BS, Ushakov IB, Ogneva IV (2012) Desmin and alpha-actinin-2 content in rat soleus muscle in the dynamics of gravitational unloading and subsequent reloading. Dokl Biochem Biophys 444: 144–146. https://doi.org/10.1134/S1607672912030052
  43. Melnikov IY, Tyganov SA, Sharlo KA, Ulanova AD, Vikhlyantsev IM, Mirzoev TM, Shenkman BS (2022) Calpain-dependent degradation of cytoskeletal proteins as a key mechanism for a reduction in intrinsic passive stiffness of unloaded rat postural muscle. Pflugers Arch 474(11): 1171–1183. https://doi.org/10.1007/s00424-022-02740-5
  44. Sergeeva KV, Tyganov SA, Zaripova KA, Bokov RO, Nikitina LV, Konstantinova TS, Kalamkarov GR, Shenkman BS (2024) Mechanical and signaling responses of unloaded rat soleus muscle to chronically elevated β-myosin activity. Arch Biochem Biophys 754: 109961. https://doi.org/ 10.1016/j.abb.2024.109961
  45. Sergeeva KV, Tyganov SA, Kalashnikov VE, Shenkman BS, Mirzoev TM (2023) Analysis of the Role of Piezo1 Channels in Mechano-Anabolic Coupling in Rat Soleus Muscle. Biol Membrany 40(5): 362–369. https://doi.org/10.31857/S0233475523050080
  46. Vilchinskaya NA, Sergeeva KV, Tyganov SА, Shenkman BS, Mirzoev ТМ (2024) Role of the Mechanically Activated Channels in the Regulation of Anabolic Markers in the Isolated Rat Postural Muscle in Response to Passive Stretching. Aviakosm Ekolog Med 58(4): 44–51. https://doi.org/10.21687/0233-528x-2024-58-4-44-51
  47. Zanou N, Schakman O, Louis P, Ruegg UT, Dietrich A, Birnbaumer L, Gailly P (2012) Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem 287(18): 14524–14534. https://doi.org/10.1074/jbc.M112.341784
  48. Xia L, Cheung KK, Yeung SS, Yeung EW (2016) The involvement of transient receptor potential canonical type 1 in skeletal muscle regrowth after unloading-induced atrophy. J Physiol 594(11): 3111–3126. https://doi.org/10.1113/JP271705
  49. Damm TB, Richard S, Tanner S, Wyss F, Egli M, Franco‐Obregón A (2013) Calcium‐dependent deceleration of the cell cycle in muscle cells by simulated microgravity. The FASEB J 27(5): 2045–2054. https://doi.org/10.1096/fj.12-218693
  50. Zhang BT, Yeung SS, Cheung KK, Chai ZY, Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 49(5): 691–699. https://doi.org/10.1002/mus.23952
  51. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin Regulates Ca2+-Dependent Feedback Inhibition of Store-Operated Ca2+ Influx by Interaction with a Site in the C Terminus of TrpC1. Mol Cell 9(4): 739–750. https://doi.org/10.1016/s1097-2765(02)00506-3

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Уровень экспрессии мРНК Piezo1 (a) и белковое содержание Piezo1 (b) в m. soleus крысы в течение функциональной разгрузки. C – контроль; HS1, HS3, HS7, HS14 – 1-, 3-, 7-, 14-суточное вывешивание задних конечностей; * – достоверное отличие от C (p < 0.05).

Скачать (157KB)
3. Рис. 2. Уровень экспрессии мРНК TRPC1 (a), TRPC3 (b) и TRPC6 (c) в m. soleus крысы в течение функциональной разгрузки. C – контроль; HS1, HS3, HS7, HS14 – 1-, 3-, 7-, 14-суточное вывешивание задних конечностей; * – достоверное отличие от C (p < 0.05).

Скачать (181KB)
4. Рис. 3. Уровень экспрессии мРНК TMEM63B (a), TRPM3 (b) и TRPM7 (c) в m. soleus крысы в течение функциональной разгрузки. C – контроль; HS1, HS3, HS7, HS14 – 1-, 3-, 7-, 14-суточное вывешивание задних конечностей; * – достоверное отличие от C (p < 0.05).

Скачать (136KB)

© Российская академия наук, 2025