Dependence of the values of fluorescence quantum yields for porphyrins and phthalocyanines from the effects of reabsorption
- Authors: Starukhin A.S.1, Kouhar V.V.1, Shershan V.S.1
- 
							Affiliations: 
							- B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
 
- Issue: Vol 88, No 6 (2024)
- Pages: 935-940
- Section: Quantum Optics and Coherent Spectroscopy
- URL: https://rjeid.com/0367-6765/article/view/654661
- DOI: https://doi.org/10.31857/S0367676524060143
- EDN: https://elibrary.ru/PGFIRZ
- ID: 654661
Cite item
Abstract
The values of fluorescence quantum yield upon using by the procedures of relative and of absolute quantum yields were measured for a set of porphyrins and phthalocyanines with different activities of bands in the absorption spectrum. The correlations between of the values quantum yields and optical densities at the absorption bands of the samples has been estimated that provides an opportunity to estimate the nature of the internal filter effects.
Full Text
 
												
	                        About the authors
A. S. Starukhin
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
							Author for correspondence.
							Email: a.starukhin@ifanbel.bas-net.by
				                					                																			                												                	Belarus, 							Minsk						
V. V. Kouhar
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
														Email: a.starukhin@ifanbel.bas-net.by
				                					                																			                												                	Belarus, 							Minsk						
V. S. Shershan
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
														Email: a.starukhin@ifanbel.bas-net.by
				                					                																			                												                	Belarus, 							Minsk						
References
- Namgoong J.W., Kim H.M., Kim S.H. et al. // Dyes Pigments. 2021. V. 184. Art. No. 108737.
- Park J., Hong K., Lee H., Jang W. // Acc. Chem. Res. 2021. V. 54. Р. 2249.
- Shi Y., Zhang F., Linhardt R. // Dyes Pigments. 2021. V. 188. Art. No. 109136.
- Gu J., Peng Y., Zhou T. et al. // Nano Res. Energy. 2022. V. 1. Art. No e9120009.
- Старухин А.С., Горский А.В., Добковский Я.З. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 345; Starukhin A.S., Gorski A.V., Dobkovski Ya.Z. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 267.
- Gorduk S., Avciata O. // J. Photochem. Photobiol. A. 2024. V. 449. Р. 115387.
- Demas J.N., Crosby G.A. // J. Phys. Chem. 1971. V. 75. No. 8. Р. 991.
- Brouwer A.M. // Pure Appl. Chem. 2011. V. 83. No. 12. Р. 2213.
- Taniguchia M., Lindsey J., Bocian D.J. et al. // J. Photochem. Photobiol. C. 2021. V. 46. Р. 100401.
- https://www.hamamatsu.com/eu/en/product/photometry-systems/luminescence-efficiency-measurement-system/absolute-pl-quantum-yield-spectrometer/C9920-02G.html.
- Паркер С.А. Фотолюминесценция растворов. М.: Мир, 1972. C. 246.
- Kubista M., Sjöback R., Eriksson S., Albinsson B. // Analyst. 1994. V. 119. P. 417.
- Гудилин Д.Ю. // Лаб. и производство. 2020. Т. 15. № 6. С. 54.
- Berbaran-Santos M.N., Nunes Pereira E.J., Martinho J.M.G. // J. Fluorescence. 1997. V. 7. P. 119S.
- Yappert M.C., Ingle J.D. // Appl. Spectrosc. 1989. V. 43. P. 759.
- Mooney J., Kambhampati P. // J. Phys. Chem. Lett. 2013. V. 4. No. 19. P. 3316.
- Marín E., Calderón A. // J. Phys. Chem. Lett. 2022. V. 13. No. 35. P. 8376.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



