Formation of Extended Tubular Plasma in Argon at Low Pressure and in a Weak Longitudinal Magnetic Field
- Авторлар: Akishev Y.S.1,2, Bakhtin V.P.1, Buleyko A.B.1, Loza O.T.1, Petryakov A.V.1, Ravaev A.A.1, Fefelova E.A.1
-
Мекемелер:
- Troitsk Institute for Innovative and Thermonuclear Research
- National Research Nuclear University “Moscow Engineering Physics Institute”
- Шығарылым: Том 50, № 2 (2024)
- Беттер: 239-254
- Бөлім: LOW TEMPERATURE PLASMA
- URL: https://rjeid.com/0367-2921/article/view/668807
- DOI: https://doi.org/10.31857/S0367292124020084
- EDN: https://elibrary.ru/QVCWZL
- ID: 668807
Дәйексөз келтіру
Толық мәтін
Аннотация
The results of experimental studies on the formation and subsequent evolution of extended (l = 300 mm) and thin-walled (Δr ≈ 10 mm) tubular (2r ≈ 110 mm) plasma in a weak longitudinal magnetic field (B = 175 G) without the use of a thermionic cathode are presented. The cylindrical chamber in which the tubular plasma was formed was pumped with high purity argon (99.998%) at an average velocity of about 1 m/s at a pressure of P = 10–3– 10–2 Torr. Two methods of creating seed electrons initiating the development of ionization avalanches were used. The difference inherent to these methods has been established in the dynamics of breakdown, completing in the formation of a tubular discharge. In the first of them, a pulsed discharge preceding the high voltage supply of the main discharge created gas preionization in a small area around the sectioned cathodes. In the second method, seed electrons were created in the entire working area of the discharge chamber by an RF discharge with a frequency of 85 kHz and duration of about 1 s. Highspeed shooting with a 4-frame ICCD camera allowed us to establish the dynamics of tubular discharge formation at all its stages. Measurements of the longitudinal and radial discharge current were carried out. The results we obtained showed the possibility of spatial isolation of an extended tubular plasma from the close located metal wall of the discharge chamber by using a weak longitudinal magnetic field.
Негізгі сөздер
Авторлар туралы
Yu. Akishev
Troitsk Institute for Innovative and Thermonuclear Research; National Research Nuclear University “Moscow Engineering Physics Institute”
Хат алмасуға жауапты Автор.
Email: akishev@triniti.ru
Ресей, Moscow, 108840; Moscow, 115409
V. Bakhtin
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
A. Buleyko
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
O. Loza
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
A. Petryakov
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
A. Ravaev
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
E. Fefelova
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Ресей, Moscow, 108840
Әдебиет тізімі
- Богданкевич Л.С., Кузелев М. В., Рухадзе А. А. // УФН. 1981. T. 133. Вып. 1. С. 3.
- Стрелков П.С. // УФН. 2019. Т. 189. Вып. 5. С. 494.
- Buleyko A.B., Ponomarev A. V., Loza O. T., Ulyanov D. K., Andreev S. E. // Phys. Plasmas. 2021.V. 28. Р. 023303.
- Buleyko A.B., Ponomarev A. V., Loza O. T., Ulyanov D. K., Sharypov K. A., Shunailov S. A., Yalandin M. I. // Phys. Plasmas. 2021. V. 28. Р. 023304.
- Карташов И.Н., Кузелев М. В. // Физика плазмы. 2021. Т. 47. № 6. С. 531.
- Akishev Yu., Karalnik V., Kochetov I., Napartovich A., Trushkin N. // Plasma Sources Sci. Technol. 2014. V. 23. Р. 054013.
- Mesyats G.A., Korolev Y. D. // Usp. Fiz. Nauk. 1986. № 148. P. 101.
- Akishev Yu., Alekseeva T., Karalnik V., Petryakov A. // J. Phys. D: Appl. Phys. 2022. V. 55 145202. doi: 10.1088/1361-6463/ac45af
- Akishev Yu.S., Karal’nik V.B., Petryakov A. V., Ionikn Yu.Z. // Plasma Physics Reports. 2021. V. 47. № 1. P. 60.
- Hagelaar G.J.M., Pitchford L. C. // Plasma Sources Sci. Technol. 2005. V. 14. Р. 722. doi: 10.1088/0963-0252/14/4/011
- Starikovskiy A.Y., Aleksandrov N. L., Shneider M. N. // Plasma Sources Sci. Technol. 2023. V. 32. I. 035005
- Storozhev D.A., Surzhikov S. T. // Journal of Basic and Applied Physics. 2013. V. 2. Iss. 3. P. 141.
- Surzhikov S.T., Shang J. S. // AIAA 2014-2236, 16—20 June 2014, Atlanta, GA. Proc. 45th AIAA Plasmadynamics and Lasers Conf.
- Surzhikov S.T. // Plasma Physics Reports. 2017. V. 43. № 3. P. 363.
- Shen Gao, Shixiu Chen, Zengchao Ji, Wei Tian, Jun Chen. DC // Advances in Mathematical Physics. V. 2017. Article ID9193149. https://doi.org/10.1155/2017/9193149
- Ryakhovskiy A. I., Schmidt A. A., Antonov V. I. // Proc. ISP RAS. 2017. V. 29. Iss. 6. P. 299. doi: 10.15514/ISPRAS-2017-29(6)-17
- Ulanov I.M., Pinaev V. A. // High Temperature. 2014. V. 52. № 1. P. 26.
- Shen Gao, Jianyuan Feng, Wenqi Li, Jihe Cai // Eur. Phys. J. Appl. Phys. 2019. V. 88. P. 30801.
Қосымша файлдар
