Влияние добавки C- и N-концевого полигистидинового тега на агрегацию белка NEP вируса гриппа А

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Белок ядерного экспорта (NEP) вируса гриппа А, являющийся одним из ключевых компонентов жизненного цикла вируса, может рассматриваться в качестве перспективной модели для изучения особенностей образования амилоидов вирусными белками. С помощью атомно-силовой микроскопии проведены сравнительные исследования агрегационных свойств рекомбинантных вариантов NEP, в том числе белка природной структуры, а также модифицированных вариантов с N- и C-концевыми His6-содержащими аффинными фрагментами. Все варианты белка в физиологических условиях способны образовывать агрегаты различной морфологии: мицеллоподобные наночастицы, гибкие протофибриллы, жесткие фибриллярные агрегаты амилоидного типа и др. Присоединенный к С-концу His6-содержащий фрагмент оказывает наибольшее влияние на кинетику агрегации и морфологию наночастиц, что свидетельствует о важной роли С-концевого домена в процессе самосборки белка. Моделирование методом молекулярной динамики не выявило существенного влияния His6-содержащих фрагментов на структуру белка, но продемонстрировало некоторые различия в подвижности этих фрагментов, что может объяснять наблюдаемые различия в кинетике агрегации различных вариантов NEP. Рассмотрены гипотетические механизмы образования и взаимопревращения различных агрегатов.

Полный текст

Доступ закрыт

Об авторах

О. Н. Королева

Московский государственный университет имени М.В. Ломоносова

Email: dubrovin@polly.phys.msu.ru

химический факультет

Россия, 119991 Москва

Н. В. Кузьмина

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: dubrovin@polly.phys.msu.ru
Россия, 119071 Москва

А. П. Толстова

Институт молекулярной биологии им. В.А. Энгельгардта РАН

Email: dubrovin@polly.phys.msu.ru
Россия, 119991 Москва

Е. В. Дубровин

Московский государственный университет имени М.В. Ломоносова; Национальный исследовательский технологический университет «МИСиС»

Автор, ответственный за переписку.
Email: dubrovin@polly.phys.msu.ru

Московский государственный университет имени М.В. Ломоносова, физический факультет

Россия, 119991 Москва; 119049 Москва

В. Л. Друца

Московский государственный университет имени М.В. Ломоносова

Email: dubrovin@polly.phys.msu.ru

НИИ физико-химической биологии имени А.Н. Белозерского

Россия, 119991 Москва

Список литературы

  1. Gao, S., Wang, S., Cao, S., Sun, L., Li, J., Bi, Y., et al. (2014) Characteristics of nucleocytoplasmic transport of H1N1 influenza A virus nuclear export protein, J. Virol., 88, 7455-7463, https://doi.org/10.1128/JVI.00257-14.
  2. Patel, H., and Kukol, A. (2019) Prediction of ligands to universally conserved binding sites of the influenza a virus nuclear export protein, Virology, 537, 97-103, https://doi.org/10.1016/j.virol.2019.08.013.
  3. Gong, W., He, X., Huang, K., Zhang, Y., Li, C., Yang, Y., Zou, Z., and Jin, M. (2021) Interaction of NEP with G protein pathway suppressor 2 facilitates influenza A virus replication by weakening the inhibition of GPS2 to RNA synthesis and ribonucleoprotein assembly, J. Virol., 95, JVI.00008-21, https://doi.org/10.1128/jvi.00008-21.
  4. Zhang, B., Liu, M., Huang, J., Zeng, Q., Zhu, Q., Xu, S., and Chen, H. (2022) H1N1 influenza A virus protein NS2 inhibits innate immune response by targeting IRF7, Viruses, 14, 2411, https://doi.org/10.3390/v14112411.
  5. Teo, Q. W., Wang, Y., Lv, H., Mao, K. J., Tan, T. J. C., Huan, Y. W., Rivera-Cardona, J., Shao, E. K., Choi, D., Dargani, Z. T., Brooke, C. B., and Wu, N. C. (2024) Deep mutational scanning of influenza A virus NEP reveals pleiotropic mutations in its N-terminal domain, bioRxiv, https://doi.org/10.1101/2024.05.16.594574.
  6. Golovko, A. O., Koroleva, O. N., Tolstova, A. P., Kuz’mina, N. V., Dubrovin, E. V., and Drutsa, V. L. (2018) Aggregation of influenza A virus nuclear export protein, Biochemistry (Moscow), 83, 1411-1421, https://doi.org/10.1134/S0006297918110111.
  7. Koroleva, O. N., Kuzmina, N. V., Dubrovin, E. V., and Drutsa, V. L. (2024) Atomic force microscopy of spherical intermediates on the pathway to fibril formation of influenza A virus nuclear export protein, Microsc. Res. Technique, 87, 1131-1145, https://doi.org/10.1002/jemt.24499.
  8. Gorai, T., Goto, H., Noda, T., Watanabe, T., Kozuka-Hata, H., Oyama, M., Takano, R., Neumann, G., Watanabe, S., and Kawaoka, Y. (2012) F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding, Proc. Natl. Acad. Sci. USA, 109, 4615-4620, https://doi.org/10.1073/pnas.1114728109.
  9. Willbold, D., Strodel, B., Schröder, G. F., Hoyer, W., and Heise, H. (2021) Amyloid-type protein aggregation and prion-like properties of amyloids, Chem. Rev., 121, 8285-8307, https://doi.org/10.1021/acs.chemrev.1c00196.
  10. Hassan, M. N., Nabi, F., Khan, A. N., Hussain, M., Siddiqui, W. A., Uversky, V. N., and Khan, R. H. (2022) The amyloid state of proteins: a boon or bane? Int. J. Biol. Macromol., 200, 593-617, https://doi.org/10.1016/ j.ijbiomac.2022.01.115.
  11. Hammarström, P., and Nyström, S. (2023) Viruses and amyloids – a vicious liaison, Prion, 17, 82-104, https:// doi.org/10.1080/19336896.2023.2194212.
  12. Gondelaud, F., Lozach, P.-Y., and Longhi, S. (2023) Viral amyloids: new opportunities for antiviral therapeutic strategies, Curr. Opin. Struct. Biol., 83, 102706, https://doi.org/10.1016/j.sbi.2023.102706.
  13. Geng, H., Subramanian, S., Wu, L., Bu, H.-F., Wang, X., Du, C., De Plaen, I. G., and Tan, X.-D. (2021) SARS-CoV-2 ORF8 forms intracellular aggregates and inhibits IFNγ-induced antiviral gene expression in human lung epithelial cells, Front. Immunol., 12, 679482, https://doi.org/10.3389/fimmu.2021.679482.
  14. Charnley, M., Islam, S., Bindra, G. K., Engwirda, J., Ratcliffe, J., Zhou, J., Mezzenga, R., Hulett, M. D., Han, K., Berryman, J. T., and Reynolds, N. P. (2022) Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19, Nat. Commun., 13, 3387, https://doi.org/10.1038/s41467-022-30932-1.
  15. Bhardwaj, T., Gadhave, K., Kapuganti, S. K., Kumar, P., Brotzakis, Z. F., Saumya, K. U., Nayak, N., Kumar, A., Joshi, R., Mukherjee, B., Bhardwaj, A., Thakur, K. G., Garg, N., Vendruscolo, M., and Giri, R. (2023) Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes, Nat. Commun., 14, 945, https://doi.org/10.1038/s41467-023-36234-4.
  16. Morozova, O. V., Manuvera, V. A., Barinov, N. A., Subcheva, E. N., Laktyushkin, V. S., Ivanov, D. A., Lazarev, V. N., and Klinov, D. V. (2024) Self-assembling amyloid-like nanostructures from SARS-CoV-2 S1, S2, RBD and N recombinant proteins, Arch. Biochem. Biophys., 752, 109843, https://doi.org/10.1016/j.abb.2023.109843.
  17. Vidic, J., Richard, C.-A., Péchoux, C., Da Costa, B., Bertho, N., Mazerat, S., Delmas, B., and Chevalier, C. (2016) Amyloid assemblies of influenza A virus PB1-F2 protein damage membrane and induce cytotoxicity, J. Biol. Chem., 291, 739-751, https://doi.org/10.1074/jbc.M115.652917.
  18. Kikkert, M. (2020) Innate immune evasion by human respiratory RNA viruses, J. Innate Immun., 12, 4-20, https://doi.org/10.1159/000503030.
  19. Shaldzhyan, A. A., Zabrodskaya, Y. A., Baranovskaya, I. L., Sergeeva, M. V., Gorshkov, A. N., Savin, I. I., Shishlyannikov, S. M., Ramsay, E. S., Protasov, A. V., Kukhareva, A. P., and Egorov, V. V. (2021) Old dog, new tricks: influenza A virus NS1 and in vitro fibrillogenesis, Biochimie, 190, 50-56, https://doi.org/10.1016/ j.biochi.2021.07.005.
  20. Cheung, P.-H. H., Lee, T.-W. T., Kew, C., Chen, H., Yuen, K.-Y., Chan, C.-P., and Jin, D.-Y. (2020) Virus subtype-specific suppression of MAVS aggregation and activation by PB1-F2 protein of influenza A (H7N9) virus, PLOS Pathog., 16, e1008611, https://doi.org/10.1371/journal.ppat.1008611.
  21. Léger, P., Nachman, E., Richter, K., Tamietti, C., Koch, J., Burk, R., Kummer, S., Xin, Q., Stanifer, M., Bouloy, M., Boulant, S., Kräusslich, H.-G., Montagutelli, X., Flamand, M., Nussbaum-Krammer, C., and Lozach, P.-Y. (2020) NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice, Nat. Commun., 11, 3281, https://doi.org/10.1038/s41467-020-17101-y.
  22. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., and Stüber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent, Nat. Biotechnol., 6, 1321-1325, https:// doi.org/10.1038/nbt1188-1321.
  23. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., and DeLucas, L. J. (2007) His-tag impact on structure, Acta Crystallogr. Sect. D Biol. Crystallogr., 63, 295-301, https://doi.org/10.1107/S0907444906052024.
  24. Mišković, M. Z., Wojtyś, M., Winiewska-Szajewska, M., Wielgus-Kutrowska, B., Matković, M., Domazet Jurašin, D., Štefanić, Z., Bzowska, A., and Leščić Ašler, I. (2024) Location is everything: influence of his-tag fusion site on properties of adenylosuccinate synthetase from Helicobacter pylori, Int. J. Mol. Sci., 25, 7613, https:// doi.org/10.3390/ijms25147613.
  25. Karan, R., Renn, D., Allers, T., and Rueping, M. (2024) A systematic analysis of affinity tags in the haloarchaeal expression system, Haloferax volcanii for protein purification, Front. Microbiol., 15, 1403623, https:// doi.org/10.3389/fmicb.2024.1403623.
  26. Khan, F., Legler, P. M., Mease, R. M., Duncan, E. H., Bergmann-Leitner, E. S., and Angov, E. (2012) Histidine affinity tags affect MSP142 structural stability and immunodominance in mice, Biotechnol. J., 7, 133-147, https://doi.org/10.1002/biot.201100331.
  27. Singh, M., Sori, H., Ahuja, R., Meena, J., Sehgal, D., and Panda, A. K. (2020) Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845, Int. J. Biol. Macromol., 163, 1240-1248, https://doi.org/10.1016/j.ijbiomac.2020.07.056.
  28. Mohanty, A. K., and Wiener, M. C. (2004) Membrane protein expression and production: effects of polyhistidine tag length and position, Protein Express. Purif., 33., 311-325, https://doi.org/10.1016/j.pep.2003.10.010.
  29. Sánchez, J. M., Carratalá, J. V., Serna, N., Unzueta, U., Nolan, V., Sánchez-Chardi, A., Voltà-Durán, E., López-Laguna, H., Ferrer-Miralles, N., Villaverde, A., and Vazquez, E. (2022) The poly-histidine TagH6 mediates structural and functional properties of disintegrating, protein-releasing inclusion bodies, Pharmaceutics, 14, 602, https://doi.org/10.3390/pharmaceutics14030602.
  30. Ayoub, N., Roth, P., Ucurum, Z., Fotiadis, D., and Hirschi, S. (2023) Structural and biochemical insights into His-tag-induced higher-order oligomerization of membrane proteins by cryo-EM and size exclusion chromatography, J. Struct Biol., 215, 107924, https://doi.org/10.1016/j.jsb.2022.107924.
  31. Golovko, A. O., Koroleva, O. N., and Drutsa, V. L. (2017) Heterologous expression and isolation of influenza A virus nuclear export protein NEP, Biochemistry (Moscow), 82, 1529-1537, https://doi.org/10.1134/S0006297917120124.
  32. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
  33. Yaminsky, I., Akhmetova, A., and Meshkov, G. (2018) Femtoscan online software and visualization of nano-objecs in high-resolution microscopy, Nanoindustry, 11, 414-416, https://doi.org/10.22184/1993-8578. 2018.11.6.414.416.
  34. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., et al. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.
  35. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19-25, https://doi.org/10.1016/j.softx.2015.06.001.
  36. Huang, J., and MacKerell, A. D. (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J. Comput. Chem., 34, 2135-2145, https://doi.org/10.1002/jcc.23354.
  37. Hamrang, Z., Rattray, N. J. W., and Pluen, A. (2013) Proteins behaving badly: emerging technologies in profiling biopharmaceutical aggregation, Trends Biotechnol., 31, 448-458, https://doi.org/10.1016/j.tibtech.2013.05.004.
  38. Wang, W., and Roberts, C. J. (2018) Protein aggregation – mechanisms, detection, and control, Int. J. Pharmaceut., 550, 251-268, https://doi.org/10.1016/j.ijpharm.2018.08.043.
  39. Müller, D. J., and Dufrêne, Y. F. (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology, Nat. Nanotechnol., 3, 261-269, https://doi.org/10.1038/nnano.2008.100.
  40. Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Selkoe, D. J., and Teplow, D. B. (1999) Amyloid β-protein fibrillogenesis: structure and biological activity of protofibrillar iintermediates, J. Biol. Chem., 274, 25945-25952, https://doi.org/10.1074/jbc.274.36.25945.
  41. Goldsbury, C., Frey, P., Olivieri, V., Aebi, U., and Müller, S. A. (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms, J. Mol. Biol., 352, 282-298, https://doi.org/10.1016/j.jmb.2005.07.029.
  42. Brown, J. W. P., Meisl, G., J. Knowles, T. P., K. Buell, A., M. Dobson, C., and Galvagnion, C. (2018) Kinetic barriers to α-synuclein protofilament formation and conversion into mature fibrils, Chem. Commun., 54, 7854-7857, https://doi.org/10.1039/C8CC03002B.
  43. Singh, J., Sabareesan, A. T., Mathew, M. K., and Udgaonkar, J. B. (2012) Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils, J. Mol. Biol., 423, 217-231, https://doi.org/10.1016/j.jmb.2012.06.040.
  44. Diociaiuti, M., Bonanni, R., Cariati, I., Frank, C., and D’Arcangelo, G. (2021) Amyloid prefibrillar oligomers: the surprising commonalities in their structure and activity, Int. J. Mol. Sci., 22, 6435, https://doi.org/10.3390/ijms22126435.
  45. Cao, Y., Adamcik, J., Diener, M., Kumita, J. R., and Mezzenga, R. (2021) Different folding states from the same protein sequence determine reversible vs irreversible amyloid fate, J. Am. Chem. Soc., 143, 11473-11481, https://doi.org/10.1021/jacs.1c03392.
  46. Taylor, A. I. P., and Staniforth, R. A. (2022) General principles underpinning amyloid structure, Front. Neurosci., 16, 878869, https://doi.org/10.3389/fnins.2022.878869.
  47. Akarsu, H., Burmeister, W. P., Petosa, C., Petit, I., Müller, C. W., Ruigrok, R. W. H., and Baudin, F. (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2), EMBO J., 22, 4646-4655, https://doi.org/10.1093/emboj/cdg449.
  48. Ulamec, S. M., Brockwell, D. J., and Radford, S. E. (2020) Looking beyond the core: the role of flanking regions in the aggregation of amyloidogenic peptides and proteins, Front. Neurosci., 14, 611285, https://doi.org/10.3389/fnins.2020.611285.
  49. Morel, B., and Conejero-Lara, F. (2019) Early mechanisms of amyloid fibril nucleation in model and disease-related proteins, Biochim. Biophys. Acta, 1867, 140264, https://doi.org/10.1016/j.bbapap.2019.140264.
  50. Pietrek, L. M., Stelzl, L. S., and Hummer, G. (2023) Structural ensembles of disordered proteins from hierarchical chain growth and simulation, Curr. Opin. Struct. Biol., 78, 102501, https://doi.org/10.1016/j.sbi. 2022.102501.
  51. Pietrek, L. M., Stelzl, L. S., and Hummer, G. (2020) Hierarchical ensembles of intrinsically disordered proteins at atomic resolution in molecular dynamics simulations, J. Chem. Theory Computat., 16, 725-737, https:// doi.org/10.1021/acs.jctc.9b00809.
  52. Alderson, T. R., Pritišanac, I., Kolarić, Đ., Moses, A. M., and Forman-Kay, J. D. (2023) Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2, Proc. Natl. Acad. Sci. USA, 120, e2304302120, https://doi.org/10.1073/pnas.2304302120.
  53. Ding, F., Borreguero, J. M., Buldyrey, S. V., Stanley, H. E., and Dokholyan, N. V. (2003) Mechanism for the α-helix to β-hairpin transition, Proteins Struct. Funct. Bioinform., 53, 220-228, https://doi.org/10.1002/ prot.10468.
  54. Matsumura, S., Shinoda, K., Yamada, M., Yokojima, S., Inoue, M., Ohnishi, T., Shimada, T., Kikuchi, K., Masui, D., Hashimoto, S., Sato, M., Ito, A., Akioka, M., Takagi, S., Nakamura, Y., Nemoto, K., Hasegawa, Y., Takamoto, H., Inoue, H., et al. (2011) Two distinct amyloid β-protein (Aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses, J. Biol. Chem., 286, 11555-11562, https://doi.org/10.1074/jbc.M110.181313.
  55. Ahmed, I., and Jones, E. M. (2019) Importance of micelle-like multimers in the atypical aggregation kinetics of N-terminal serum amyloid A peptides, FEBS Lett., 593, 518-526, https://doi.org/10.1002/ 1873-3468.13334.
  56. Lombardo, D., Kiselev, M. A., Magazù, S., and Calandra, P. (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches, Adv. Condensed Matter Physics, 2015, e151683, https:// doi.org/10.1155/2015/151683.
  57. Modler, A., Fabian, H., Sokolowski, F., Lutsch, G., Gast, K., and Damaschun, G. (2004) Polymerization of proteins into amyloid protofibrils shares common critical oligomeric states but differs in the mechanisms of their formation, Amyloid, 11, 215-231, https://doi.org/10.1080/13506120400014831.
  58. Hill, S. E., Robinson, J., Matthews, G., and Muschol, M. (2009) Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion, Biophys. J., 96, 3781-3790, https://doi.org/10.1016/j.bpj.2009.01.044.
  59. Nishide, G., Lim, K., Tamura, M., Kobayashi, A., Zhao, Q., Hazawa, M., Ando, T., Nishida, N., and Wong, R. W. (2023) Nanoscopic elucidation of spontaneous self-assembly of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) open reading frame 6 (ORF6) protein, J. Phys. Chem. Lett., 14, 8385-8396, https://doi.org/ 10.1021/acs.jpclett.3c01440.
  60. Lee, C.-T., and Terentjev, E. M. (2017) Mechanisms and rates of nucleation of amyloid fibrils, J. Chem. Physics, 147, 105103, https://doi.org/10.1063/1.4995255.
  61. Sabaté, R., and Estelrich, J. (2005) Evidence of the existence of micelles in the fibrillogenesis of β-amyloid peptide, J. Phys. Chem. B, 109, 11027-11032, https://doi.org/10.1021/jp050716m.
  62. Selkoe, D. J., and Podlisny, M. B. (2002) Deciphering the genetic basis of Alzheimer’s disease, Annu. Rev. Genom. Hum. Genet., 3, 67-99, https://doi.org/10.1146/annurev.genom.3.022502.103022.
  63. Jia, L., Wang, W., Sang, J., Wei, W., Zhao, W., Lu, F., and Liu, F. (2019) Amyloidogenicity and cytotoxicity of a recombinant C-terminal His6-tagged Aβ1-42, ACS Chem. Neurosci., 10, 1251-1262, https://doi.org/10.1021/ acschemneuro.8b00333.
  64. Adegbuyiro, A., Sedighi, F., Pilkington, A. W., Groover, S., and Legleiter, J. (2017) Proteins containing expanded polyglutamine tracts and neurodegenerative disease, Biochemistry, 56, 1199-1217, https://doi.org/10.1021/ acs.biochem6b00936.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Рекомбинантные варианты белка NEP, исследованные в работе. a – Схематическое изображение. В структуре белков прямоугольниками отмечены α-спирали C1 и С2 (по данным рентгеноструктурного анализа С-концевого фрагмента NEP [24]), пунктирной линией – неструктурированная область (НС), надписями «His» – полигистидин-содержащие аффинные теги MHHHHHHSGGT (для NEP-N) и DPGSHHHHHHL (для NEP-C). б – Электрофоретический анализ в 15%-ном ДСН-ПААГ свежевыделенных (I) и после выдерживания в течение 3 мес. (II) при 4 °С препаратов NEP (дорожки 1 и 4), NEP-N (дорожки 2 и 5) и NEP-C (дорожки 3 и 6); М – белковые маркеры молекулярной массы

Скачать (339KB)
3. Рис. 2. АСМ-изображения природного белка NEP и его агрегатов. а и б – Срок хранения препарата после выделения составляет несколько часов (т.е. исследованы в день выделения). в–е – Срок хранения препарата после выделения составляет 5 мес. д – Присутствует эффект двоения изображения. Снизу приведены профили поверхности вдоль линий на соответствующих АСМ-изображениях. Вставки на панелях (а) и (в) представляют собой увеличенные области поверхности, выделенные квадратом (размер вставок 300 × 300 и 150 × 150 нм2 для (а) и (в) соответственно). ж – Гистограмма распределения высот объектов на панели (а)

4. Рис. 3. АСМ-изображения белка NEP-N и его агрегатов. Срок хранения препарата после выделения составлял 1 день (а и б) и 10 дней (в). Снизу приведены профили поверхности вдоль линий на соответствующих АСМ-изображениях. Вставка на панели (б) представляет собой увеличенную область поверхности, выделенную квадратом (размер вставки 250 × 250 нм2). г – Гистограмма распределения высот объектов на панели (а)

Скачать (757KB)
5. Рис. 4. АСМ-изображения белка NEP-С и его агрегатов. Срок хранения препарата после выделения составлял 1 день (а), 8 дней (б и в) и 14 дней (г). Снизу приведены профили поверхности вдоль линий на соответствующих АСМ-изображениях. Вставка на панели (б) представляет собой увеличенную область поверхности, выделенную квадратом (размер вставки 65 × 100 нм2). д – Гистограмма распределения высот объектов на панели (а)

Скачать (932KB)
6. Рис. 5. Схема, иллюстрирующая формирование различных агрегатов трех вариантов белка NEP с течением времени

Скачать (452KB)
7. Рис. 6. Репрезентативные трехмерные структуры молекул NEP (а), NEP-N (б) и NEP-C (в), полученные в результате моделирования (200 нс) методом МД. Указано положение N- и С-концевых областей

Скачать (283KB)

© Российская академия наук, 2024