Цитохромы P450: особенности механизмов катализа и электрокатализа для создания биосенсоров и биореакторов
- Авторы: Королева П.И1, Булко Т.В1, Агафонова Л.Е1, Шумянцева В.В1,2
-
Учреждения:
- Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 88, № 10 (2023)
- Страницы: 1985-2001
- Раздел: Регулярные статьи
- URL: https://rjeid.com/0320-9725/article/view/665548
- DOI: https://doi.org/10.31857/S0320972523100172
- EDN: https://elibrary.ru/OVNWSI
- ID: 665548
Цитировать
Аннотация
Цитохромы P450 - уникальное семейство ферментов, обнаруженное во всех царствах живых существ (у животных, бактерий, растений, грибов, архей). Основной функциональной ролью цитохромов P450 является биотрансформация экзогенных и эндогенных соединений. Данный обзор посвящен проблеме повышения эффективности электрокатализа цитохромами P450, которые обладают уникальными возможностями как для создания биосенсоров, так и для биотехнологического применения. В работе рассмотрены основные способы создания реконструированных и электрохимических каталитических систем на основе цитохромов P450, а также современные тенденции и подходы к практическому применению цитохромов P450.
Ключевые слова
Об авторах
П. И Королева
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича119121 Москва, Россия
Т. В Булко
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича119121 Москва, Россия
Л. Е Агафонова
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича119121 Москва, Россия
В. В Шумянцева
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича;Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: viktoria.shumyantseva@ibmc.msk.ru
119121 Москва, Россия;117997 Москва, Россия
Список литературы
- Shumyantseva, V. V., Bulko, T. V., and Archakov, A. I. (2005) Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors, J. Inorg. Biochem., 99, 1051-1063, doi: 10.1016/j.jinorgbio.2005.01.014.
- Guengerich, F. P. (2015) Human cytochrome P450 enzymes, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 523-785, doi: 10.1007/978-3-319-12108-6.
- Zhang, Y.-Y., and Yang, L. (2009) Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications, Expert Opin. Drug Metab. Toxicol., 5, 621-629, doi: 10.1517/1742525090296764.
- Oliw, E. H., Guengerich, F. P., and Oates, J. A. (1982) Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates, J. Biol. Chem., 257, 3771-3781, doi: 10.1016/S0021-9258(18)34848-8.
- Zanger, U. M., and Schwab, M. (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther., 138, 103-141, doi: 10.1016/j.pharmthera.2012.12.007.
- Crettol, S., Petrovic, N., and Murray, M. (2010) Pharmacogenetics of phase I and phase II drug metabolism, Curr. Pharm. Des., 16, 204-219, doi: 10.2174/138161210790112674.
- Sono, M., Roach, M. P., Coulter, E. D., and Dawson, J. H. (1996) Heme-containing oxygenases, Chem. Rev., 96, 2841-2887, doi: 10.1021/cr9500500.
- Zuccarello, L., Barbosa, C., Todorovic, S., and Selivera, C. M. (2021) Electrocatalysis by heme enzymes-applications in biosensing, Catalysts, 11, 218, doi: 10.3390/catal11020218.
- Bandookwala, M., Nemani, K. S., Chatterjee, B., and Sengupta, P. (2020) Reactive metabolites: generation and estimation with electrochemistry based analytical strategy as an emerging Screening tool, Curr. Anal. Chem., 16, 811-825, doi: 10.2174/1573411016666200131154202.
- Portychova, L., and Schug, K. A. (2017) Instrumentation and applications of electrochemistry coupled to mass spectrometry for studying xenobiotic metabolism: a review, Anal. Chim. Acta, 993, 1-21, doi: 10.1016/j.aca.2017.08.050.
- Grint, I., Crea, F., and Vasiliadou, R. (2022) The combination of electrochemistry and microfluidic technology in drug metabolism studies, ChemistryOpen, 11, e202200100, doi: 10.1002/open.202200100.
- Waskell, L., and Kim, J.-J. P. (2015) Electron transfer partners of cytochrome P450, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 33-68, doi: 10.1007/978-3-319-12108-6.
- Im, S.-C., and Waskell, L. (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b5, Arch. Biochem. Biophys., 507, 144-153, doi: 10.1016/j.abb.2010.10.023.
- Zhang, H., Im, S.-C., and Waskell, L. (2007) Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4*, J. Biol. Chem., 282, 29766-29776, doi: 10.1074/jbc.M703845200.
- Hannemann, F., Bichet, A., Ewen, K. M., and Bernhardt, R. (2007) Cytochrome P450 systems - biological variations of electron transport chains, Biochim. Biophys. Acta, 1770, 330-344, doi: 10.1016/j.bbagen.2006.07.017.
- Lambeth, J. D. (1990) in Molecular Mechanisms of Adrenal Steroidogenesis and Aspects of Regulation and Application (Ruckpaul, K., and Rein, H., eds) De Gruyter, Berlin, Boston, pp. 58-100, doi: 10.1515/9783112563281-003.
- Atkins, W. M., and Sligar, S. G. (1988) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis, J. Biol. Chem., 263, 18842-18849, doi: 10.1016/S0021-9258(18)37359-9.
- Narhi, L. O., and Fulco, A. J. (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium, J. Biol. Chem., 261, 7160-7169, doi: 10.1016/S0021-9258(17)38369-2.
- Denisov, I. G., Makris, T. M., Sligar, S. G., and Schlichting, I. (2005) Structure and chemistry of cytochrome P450, Chem. Rev., 105, 2253-2278, doi: 10.1021/cr0307143.
- Katagiri, M., Ganguli, B. N., and Gunsalus, I. C. (1968) A soluble cytochrome P-450 functional in methylene hydroxylation, J. Biol. Chem., 243, 3543-3546, doi: 10.1016/S0021-9258(18)93343-0.
- Hedegaard, J., and Gunsalus, I. C. (1965) Mixed function oxidation: IV. Aninduced methylene hydroxylase in camphor oxidation, J. Biol. Chem., 240, 4038-4043, doi: 10.1016/S0021-9258(18)97147-4.
- Conrad, H. E., Lieb, K., and Gunsalus, I. C. (1965) Mixed function oxidation: III. An electron transport complex in camphor ketolactonization, J. Biol. Chem., 240, 4029-4037, doi: 10.1016/S0021-9258(18)97146-2.
- Estabrook, R. W., Hildebrandt, A., Baron, J., Netter, K. J., and Leibman, K. (1971) A new spectral species associated with cytochrome P-450 in liver microsomes, Biochem. Biophys. Res. Commun., 3, 260-261, doi: 10.1016/0006-291X(71)90372-X.
- Guengerich, F. P., and Johnson, W. W. (1997) Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems, Biochemistry, 36, 14741-14750, doi: 10.1021/bi9719399.
- Bernhardt, R. (1996) Cytochrome P450: structure, function and generation of reactive oxygen species, Rev. Physiol. Biochem. Pharmacol., 127, 137-221, doi: 10.1007/BFb0048267.
- Hrycay, E. G., and Bandiera, S. M. (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450, Arch. Biochem. Biophys., 522, 71-89, doi: 10.1016/j.abb.2012.01.003.
- Bernhardt, R., and Urlacher, V. B. (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations, Appl. Microbiol. Biotechnol., 98, 6185-6203, doi: 10.1007/s00253-014-5767-7.
- Kumar, S. (2010) Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation, Expert Opin. Drug Metab. Toxicol., 6, 115-131, doi: 10.1517/17425250903431040.
- Venkatakrishnan, K., von Moltke, L. L., and Greenblatt, D. J. (2001) Human drug metabolism and the cytochromes P450: application and relevance of in vitro models, J. Clin. Pharmacol., 41, 1149-1179, doi: 10.1177/00912700122012724.
- Baj-Rossi, C., De Micheli, G., and Carrara, S. (2011) P450-based nano-bio-sensors for personalized medicine, in Biosensors Emerging Materials and Applications (Serra, P. A., ed) InTech, London, doi: 10.5772/16328.
- Joseph, S., Rusling, J. F., Lvov, Y. M., Friedberg, T., and Fuhr, U. (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool, Biochem. Pharmacol., 65, 1817-1826, doi: 10.1016/S0006-2952(03)00186-2.
- Morant, M., Bak, S., Møller, B. L., and Werck-Reichhart, D. (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation, Curr. Opin. Biotechnol., 14, 151-162, doi: 10.1016/s0958-1669(03)00024-7.
- Jennewein, S., and Croteau, R. (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications, Appl. Microbiol. Biotechnol., 57, 13-19, doi: 10.1007/s002530100757.
- Falck, J. R., Reddy, Y. K., Haines, D. C., Reddy, K. M., Krishna, U. M., Graham, S., Murry, B., and Peterson, J. A. (2001) Practical, enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic acid), Tetrahedron Lett., 42, 4131-4133, doi: 10.1016/S0040-4039(01)00694-3.
- Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties, Curr. Opin. Electrochem., 19, 20-26, doi: 10.1016/j.coelec.2019.09.004.
- Sakaki T. (2012) Practical application of cytochrome P450, Biol. Pharm. Bull., 35, 844-849, doi: 10.1248/bpb.35.844.
- Di Nardo, G., and Gilardi, G. (2020) Natural compounds as pharmaceuticals: the key role of cytochromes P450 reactivity, Trends Biochem. Sci., 45, 511-525, doi: 10.1016/j.tibs.2020.03.004.
- Girhard, M., Bakkes, P. J., Mahmoud, O., and Urlacher, V. B. (2015) P450 Biotechnology, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 451-520, doi: 10.1007/978-3-319-12108-_8.
- Urlacher, V. B., and Girhard, M. (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application, Trends Biotechnol., 30, 26-36, doi: 10.1016/j.tibtech.2011.06.012.
- Bernhardt, R. (2006) Cytochromes P450 as versatile biocatalysts, J. Biotechnol., 124, 128-145, doi: 10.1016/j.jbiotec.2006.01.026.
- Yun, C.-H., Kim, K.-H., Kim, D.-H., Jung, H.-C., and Pan, J.-G. (2007) The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities, Trends Biotechnol., 25, 289-298, doi: 10.1016/j.tibtech.2007.05.003.
- Correddu, D., Di Nardo, G., and Gilardi, G. (2021) Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications, Trends Biotechnol., 39, 1184-1207, doi: 10.1016/j.tibtech.2021.01.011.
- Gilardi, G., Meharenna, Y. T., Tsotsou, G. E., Sadeghi, S. J., Fairhead, M., and Giannini, S. (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology, Biosens. Bioelectron., 17, 133-145, doi: 10.1016/s0956-5663(01)00286-x.
- Cirino, P., and Arnold, F. (2002) Regioselectivity and activity of cytochrome P450 BM-3 and mutant f87A in reactions driven by hydrogen peroxide, Adv. Synth. Catal., 344, 932-937, doi: 10.1002/1615-4169(200210)344:9<932::AID-ADSC932>3.0.CO;2-M.
- Strohmaier, S. J., De Voss, J. J., Jurva, U., Andersson, S., and Gillam, E. M. J. (2020) Oxygen surrogate systems for supporting human drug-metabolizing cytochrome P450 enzymes, Drug Metab. Dispos., 48, 432-437, doi: 10.1124/dmd.120.090555.
- Albertolle, M. E., and Guengerich, F. P. (2018) The relationships between cytochromes P450 and H2O2: Production, reaction, and inhibition, J. Inorg. Biochem., 186, 228-234, doi: 10.1016/j.jinorgbio.2018.05.014.
- Veith, A., and Moorthy, B. (2018) Role of cytochrome P450s in the generation and metabolism of reactive oxygen species, Curr. Opin. Toxicol., 7, 44-51, doi: 10.1016/j.cotox.2017.10.003.
- Girhard, M., Kunigk, E., Tihovsky, S., Shumyantseva, V. V., and Urlacher, V. B. (2013) Light-driven biocatalysis with cytochrome P450 peroxygenases, Biotechnol. Appl. Biochem., 60, 111-118, doi: 10.1002/bab.1063.
- Chen, H., Huang, M., Yan, W., Bai, W.-J., and Wang, X. (2021) Enzymatic regio- and enantioselective C-H oxyfunctionalization of fatty acids, ACS Catal., 11, 10625-10630, doi: 10.1021/acscatal.1c03292.
- Wise, C. E., Hsieh, C. H., Poplin, N. L., and Makris, T. M. (2018) Dioxygen activation by the biofuel-generating cytochrome P450 OleT, ACS Catal., 8, 9342-9352, doi: 10.1021/acscatal.8b02631.
- Yamazaki, H., Nakano, M., Imai, Y., Ueng, Y.-F., Guengerich, F. P., and Shimada, T. (1996) Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes, Arch. Biochem. Biophys., 325, 174-182, doi: 10.1006/abbi.1996.0022.
- Backes, W. L., and Kelley, R. W. (2003) Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes, Pharmacol. Ther., 98, 221-233, doi: 10.1016/s0163-7258(03)00031-7.
- Shangguan, L., Wei, Y., Liu, X., Yu, J., and Liu, S. (2017) Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions, Chem. Commun., 53, 2673-2676, doi: 10.1039/C7CC00300E.
- Furlani, I. L., Oliveira, R. V., and Cass, Q. B. (2023) Immobilization of cytochrome P450 enzymes onto magnetic beads: an approach to drug metabolism and biocatalysis, Talanta Open, 7, 100181, doi: 10.1016/j.talo.2023.100181.
- Brian, W. R., Sari, M. A., Iwasaki, M., Shimada, T., Kaminsky, L. S., and Guengerich, F. P. (1990) Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae, Biochemistry, 29, 11280-11292, doi: 10.1021/bi00503a018.
- Rendic, S. (2002) Summary of information on human CYP enzymes: human P450 metabolism data, Drug Metab. Rev., 34, 83-448, doi: 10.1081/dmr-120001392.
- Srdič, M., Fessner, N. D., Yildiz, D., Glieder, A., Spiertz, M., and Schwaneberg, U. (2022) Preparative production of functionalized (N- and O-Heterocyclic) polycyclic aromatic hydrocarbons by human cytochrome P450 3A4 in a bioreactor, Biomolecules, 12, 153, doi: 10.3390/biom12020153.
- Shumyantseva, V. V., Bulko, T. V., Schmid, R. D., and Archakov, A. I. (2002) Photochemical properties of a riboflavins/cytochrome P450 2B4 complex, Biosens. Bioelectron, 17, 233-238, doi: 10.1016/S0956-5663(01)00181-6.
- Le, T.-K., Park, J. H., Choi, D. S., Lee, G.-Y., Choi, W. S., Jeong, K. J., Park, C. B., and Yun, C.-H. (2019) Solar-driven biocatalytic C-hydroxylation through direct transfer of photo induced electrons, Green Chem., 21, 515-525, doi: 10.1039/c8gc02398k.
- Park, J. H., Lee, S. H., Cha, Choi, G. S., D. S., Nam, D. H., Lee, J. H., Lee, J.-K., Yun, C.-H. Jeong, K. J., and Park, C. B. (2015) Cofactor-free light-driven whole-cell cytochrome P450 catalysis, Angew. Chem., 127, 983-987, doi: 10.1002/anie.201410059.
- Shumyantseva, V. V., Kuzikov, A. V., Masamrekh, R. A., Bulko, T. V., and Archakov, A. I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450, Biosens. Bioelectron., 15, 192-204 doi: 10.1016/j.bios.2018.08.040.
- Schneider, E., and Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors, Biosens. Bioelectron., 39, 1-13, doi: 10.1016/j.bios.2012.05.043.
- Ducharme, J., and Auclair, K. (2018) Use of bioconjugation with cytochrome P450 enzymes, Biochim. Biophys. Acta Proteins Proteomics, 1866, 32-51, doi: 10.1016/j.bbapap.2017.06.007.
- Valikhani, D., Bolivar, J. M., and Pelletier, J. N. (2021) An overview of cytochrome P450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: challenges and opportunities, ACS Catal., 11, 9418-9434, doi: 10.1021/acscatal.1c02017.
- Bistolas, N., Wollenberger, U., Jung, C., and Scheller, F. W. (2005) Cytochrome P450 biosensors - a review, Biosens. Bioelectron., 20, 2408-2423, doi: 10.1016/j.bios.2004.11.023.
- Asturias-Arribas, L., Alonso-Lomillo, M. A., Domínguez-Renedo, O., and Arcos-Martínez, M. J. (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors, Talanta, 105, 131-134, doi: 10.1016/j.talanta.2012.11.078.
- Rusling, F., Wang, B., and Yun, S. (2008) Electrochemistry of redox enzymes, in Bioelectrochemistry: Fundametals, Experimental Techniques and Applications (Bartlett, P. N., ed) John Wiley & Sons Ltd., New Jersey, pp. 39-85, doi: 10.1002/9780470753842.ch2.
- Lamb, D. C., Waterman, M. R., Kelly, S. L., and Guengerich, F. P. (2007) Cytochromes P450 and drug discovery, Curr. Opin. Biotechnol., 18, 504-512, doi: 10.1016/j.copbio.2007.09.010.
- Guengerich, F. P. (2021) Drug metabolism: cytochrome P450, in Reference Module in Biomedical Sciences, Elsevier, Netherlands, doi: 10.1016/B978-0-12-820472-6.99996-1.
- Bavishi, K., Laursen, T., Martinez, K. L., Møller, B. L., and Della Pia, E. A. (2016) Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci. Rep., 6, 29459, doi: 10.1038/srep29459.
- Shumyantseva, V. V., Koroleva, P. I., Bulko, T. V., Shkel, T. V., Gilep, A. A., and Veselovsky, A. V. (2023) Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4, Bioelectrochemistry, 149, 108277, doi: 10.1016/j.bioelechem.2022.108277.
- Miller, W. L. (2005) Minireview: regulation of steroidogenesis by electron transfer, Endocrinology, 146, 2544-2550, doi: 10.1210/en.2005-0096.
- Di Nardo, G., and Gilardi, G. (2021) Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response, Bioelectrochemistry, 138, 107729, doi: 10.1016/j.bioelechem.2020.107729.
- Zhang, C., Lu, M., Lin, L., Huang, Z., Zhang, R., Wu, X., and Chen, Y. (2020) Riboflavin is directly involved in N-dealkylation catalyzed by bacterial cytochrome P450 monooxygenases, ChemBioChem, 21, 2297-2305, doi: 10.1002/cbic.202000071.
- Gray, J. J. (2004) The interaction of proteins with solid surfaces, Curr. Opin. Struct. Biol., 14, 110-115, doi: 10.1016/j.sbi.2003.12.001.
- Mie, Y., Ikegami, M., and Komatsu. Y. (2016) Nanoporous structure of gold electrode fabricated by anodization and its efficacy for direct electrochemistry of human cytochrome P450, Chem. Lett., 45, 640-642, doi: 10.1246/cl.160164.
- Dai, Q., Yang, L., Wang, Y., Cao, X., Yao, C., and Xu, X. (2020) Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles, Anal. Bioanal. Chem., 412, 4703-4712, doi: 10.1007/s00216-020-02727-0.
- Xu, X., Zheng, Q., Bai, G., Dai, Q., Cao, X., Yao, Y., Liu, S., and Yao, C. (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones, Biosens. Bioelectron., 119, 182-190, doi: 10.1016/j.bios.2018.08.009.
- Lu, J., Li, H., Cui, D., Zhang, Y., and Liu, S. (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO2 nanotube arrays, Anal. Chem., 86, 8003-8009, doi: 10.1021/ac502234x.
- Shumyantseva, V. V., Kuzikov, A. V., Masamrekh, R. A., Filippova, T. A., Koroleva, P. I., Agafonova, L. E., Bulko, T. V., and Archakov, A. I. (2022) Enzymology on an electrode and in a nanopore: analysis algorithms, enzyme kinetics, and perspectives, BioNanoScience, 12, 1341-1355, doi: 10.1007/s12668-022-01037-2.
- Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli F., and Walde, P. (2016) Enzymatic reactions in confined environments, Nat. Nanotech., 11, 409-420, doi: 10.1038/nnano.2016.54.
- Шумянцева В. В., Королева П. И., Гилеп А. А., Напольский К. С., Иванов Ю. Д., Канашенко С. Л., Арчаков А. И. (2022) Повышение эффективности электрокатализа цитохрома Р450 3А4 с помощью модификации электрода пространственно-упорядоченными наноструктурами на основе анодного оксида алюминия для исследования метаболических превращений лекарственных препаратов, Докл. Росс. Акад. Наук Науки о Жизни, 506, 62-67, doi: 10.31857/S26867389220502986.
- Koroleva, P. I., Gilep, A. A., Kraevskiy, S. V., Tsybruk, T. V., and Shumyantseva, V. V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin o for studying the metabolic transformations of drugs, Biosensors, 13, 457, doi: 10.3390/bios13040457.
- Арчаков А. И. (1975) Микросомальное окисление, Наука, Москва, 327 с.
- Sultana, N., Schenkman, J. B., and Rusling. J. F. (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases, J. Am. Chem. Soc., 127, 13460-13461, doi: 10.1021/ja0538334.
- Krishnan, S., and Rusling, J. F. (2007) Thin film voltammetry of metabolic enzymes in rat liver microsomes, Electrochem. Commun., 9, 2359-2363, doi: 10.1016/j.elecom.2007.07.002.
- Nerimetla, R., and Krishnan, S. (2015) Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis, Chem. Commun., 51, 11681-11684, doi: 10.1039/c5cc03364k.
- Xu, X., Bai, G., Song, L., Zheng, Q., Yao, Y., Liu, S., and Yao, C. (2017) Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite, Electrochim. Acta, 258, 1365-1374, doi: 10.1016/j.electacta.2017.11.195.
- Nerimetla, R., Premaratne, G., Liu, H., and Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles, Electrochim. Acta, 280, 101-107, doi: 10.1016/j.electacta.2018.05.085.
- Walgama, C., Nerimetla, R., Materer, N. F., Schildkraut, D., Elman, J. F., and Krishnan. S. (2015) A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition, Assays Anal. Chem., 87, 4712-4718, doi: 10.1021/ac5044362.
- Walker, A., Walgama, C., Nerimetla, R., Alavi, S. H., Echeverria, E., Harimkar, S. P., McIlroy, D. N., and Krishnan, S. (2020) Roughened graphite biointerfaced with P450 liver microsomes: Surface and electrochemical characterizations, Colloids Surf. B, 189, 110790, doi: 10.1016/j.colsurfb.2020.110790.
- Kahma, H., Filppula, A. M., Launiainen, T., Viinamäki, J., Neuvonen, M., Evangelista, E. A., Totah, R. A., and Backman, J. T. (2019) Disparities in CYP2C8 inactivation between enzyme sources, Drug Metab. Dispos., 47, 436-443, doi: 10.1124/dmd.118.085498.
- Kumar, V., Rock, D. A., Warren, C. J., Tracy, T. S., and Wahlstrom, J. L. (2006) Enzyme source effects on CYP2C9 kinetics and inhibition, Drug Metab. Dispos., 34, 1903-1908, doi: 10.1124/dmd.106.010249.
- Nerimetla, R., Walgama, C., Singh, V., Hartson, S. D., and Krishnan, S. (2017) Mechanistic insights on the voltage-driven biocatalysis of a cytochrome P450 bactosomal film on a self-assembled monolayer, ACS Catal., 7, 3446-3453, doi: 10.1021/acscatal.6b03588.
Дополнительные файлы
