Разнообразие и эволюция трансляционных аппаратов митохондрий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Эволюция митохондрий протекала независимо в разных эукариотических линиях, что отражается в многообразии митохондриальных геномов и механизмов их экспрессии, наблюдаемых у разных представителей эукариот. Митохондрии утратили подавляющее большинство генов своего бактериального предка, часть из которых была перенесена в ядро, а остальные - утрачены. Таким образом, в митохондриях практически всех эукариотических клеток сохранились сравнительно небольшие геномы, а также аппараты их репликации, транскрипции и трансляции. Зависимость от ядерного генома, особенности митохондриальных транскриптов, необходимость синтеза высокогидрофобных мембранных белков привели к тому, что аппарат митохондриальной трансляции, полученный от бактериального предка, претерпел ряд существенных изменений. Он сохранил базовую структуру, необходимую для осуществления синтеза белка, но стал более специализированным и лабильным. В данном обзоре мы рассматриваем изменения, произошедшие в процессе инициации митохондриальной трансляции, а также то, как эволюция митохондрий отразилась на функциях основных факторов инициации биосинтеза белка в этих органеллах.

Об авторах

М. В Балева

Московский государственный университет имени М.В. Ломоносова, биологический факультет

119234 Москва, Россия

У. Е Пиунова

Московский государственный университет имени М.В. Ломоносова, биологический факультет

119234 Москва, Россия

И. В Чичерин

Московский государственный университет имени М.В. Ломоносова, биологический факультет

119234 Москва, Россия

С. А Левицкий

Московский государственный университет имени М.В. Ломоносова, биологический факультет

119234 Москва, Россия

П. А Каменский

Московский государственный университет имени М.В. Ломоносова, биологический факультет

Email: piotr.kamenski@gmail.com
119234 Москва, Россия

Список литературы

  1. Andersson, S. G. E., Zomorodipour, A., Andersson, J. O., Sicheritz-Pontén, T., Alsmark, U. C. M., Podowski, R. M., Näslund, A. K., Eriksson, A. S., Winkler, H. H., and Kurland, C. G. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 396, 133-140, doi: 10.1038/24094.
  2. Read, A. D., Bentley, R. ET., Archer, S. L., Dunham-Snary, K. J. (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology, Redox Biol., 47, 102164, doi: 10.1016/j.redox.2021.102164.
  3. Kastaniotis, A. J., Autio, K. J., Kerätär, J. M., Monteuuis, G., Mäkelä, A. M., Nair, R. R., Pietikäinen, L. P., Shvetsova, A., Chen, Z., and Hiltunen, J. K. (2017) Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 39-48, doi: 10.1016/j.bbalip.2016.08.011.
  4. De Vitto, H., Arachchige, D. B., Richardson, B. C., and French, J. B. (2021) The intersection of purine and mitochondrial metabolism in cancer, Cells, 10, 2603, doi: 10.3390/cells10102603.
  5. Sloan, D. B., Warren, J. M., Williams, A. M., Wu, Z., Abdel-Ghany, S. E., Nair, R. R., Pietikäinen, L. P., Shvetsova, A., Chen, Z., and Hiltunen, J. K. (2018) Cytonuclear integration and co-evolution, Nat. Rev. Genet., 19, 635-648, doi: 10.1038/s41576-018-0035-9.
  6. Boore, J. L. (1999) Animal mitochondrial genomes, Nucleic Acids Res., 27, 1767-1780, doi: 10.1093/nar/27.8.1767.
  7. Gualberto, J. M., Mileshina, D., Wallet, C., Niazi, A. K., Weber-Lotfi, F., and Dietrich, A. (2014) The plant mitochondrial genome: Dynamics and maintenance, Biochimie, 100, 107-120, doi: 10.1016/j.biochi.2013.09.016.
  8. Callejas-Hernández, F., Herreros-Cabello, A., del Moral-Salmoral, J., Fresno, M., and Gironès, N. (2021) The complete mitochondrial DNA of Trypanosoma cruzi: maxicircles and minicircles, Front. Cell. Infect. Microbiol., 11, 672448, doi: 10.3389/fcimb.2021.672448.
  9. Petrov, A. S., Wood, E. C., Bernier, C. R., Norris, A. M., Brown, A., and Amunts, A. (2019) Structural patching fosters divergence of mitochondrial ribosomes, Mol. Biol. Evol., 36, 207-2019, doi: 10.1093/molbev/msy221.
  10. Gray, M. W. (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria, Proc. Natl. Acad. Sci. USA, 112, 10133-10138, doi: 10.1073/pnas.1421379112.
  11. Van Der Sluis, E. O., Bauerschmitt, H., Becker, T., Mielke, T., Frauenfeld, J., Berninghausen, O., Neupert, W., Herrmann, J. M., and Beckmann, R. (2015) Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes, Genome Biol. Evol., 7, 1235-1251, doi: 10.1093/gbe/evv061.
  12. Waltz, F., Soufari, H., Bochler, A., Giegé, P., and Hashem, Y. (2020) Cryo-EM structure of the RNA-rich plant mitochondrial ribosome, Nat. Plants, 6, 377-383, doi: 10.1038/s41477-020-0631-5.
  13. Waltz, F., Salinas-Giegé, T., Englmeier, R., Meichel, H., Soufari, H., Kuhn, L., Pfeffer, S., Förster, F., Engel, B. D., Giegé, P., Drouard, L., and Hashem, Y. (2021) How to build a ribosome from RNA fragments in Chlamydomonas mitochondria, Nat. Commun., 12, 7176, doi: 10.1038/s41467-021-27200-z.
  14. Feagin, J. E., Harrell, M. I., Lee, J. C., Coe, K. J., Sands, B. H., Cannone, J. J., Tami, G., Schnare, M. N., and Gutell, R. R. (2012) The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum, PLoS One, 7, e38320, doi: 10.1371/journal.pone.0038320.
  15. Chrzanowska-Lightowlers, Z., Rorbach, J., and Minczuk, M. (2017) Human mitochondrial ribosomes can switch structural tRNAs - but when and why? RNA Biol., 14, 1668-1671, doi: 10.1080/15476286.2017.1356551.
  16. Amunts, A., Brown, A., Bai, X., Llácer, J. L., Hussain, T., Emsley, P., Long, F., Murshudov, G., Scheres, S. H. W., and Ramakrishnan, V. (2014) Structure of the yeast mitochondrial large ribosomal subunit, Science, 343, 1485-1489, doi: 10.1126/science.1249410.
  17. Smits, P., Smeitink, J. A. M., van den Heuvel, L. P., Huynen, M. A., and Ettema, T. J. G. (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome, Nucleic Acids Res., 35, 4686-4703, doi: 10.1093/nar/gkm441.
  18. Scaltsoyiannes, V., Corre, N., Waltz, F., and Giegé, P. (2022) Types and functions of mitoribosome-specific ribosomal proteins across eukaryotes, Int. J. Mol. Sci., 23, 3474, doi: 10.3390/ijms23073474.
  19. Koc, E. C., Ranasinghe, A., Burkhart, W., Blackburn, K., Koc, H., Moseley, A., and Spremulli, L. L. (2001) A new face on apoptosis: death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins, FEBS Lett., 492, 166-170, doi: 10.1016/S0014-5793(01)02250-5.
  20. Hussain, T., Llácer, J. L., Wimberly, B. T., Kieft, J. S., and Ramakrishnan, V. (2016) Large-scale movements of IF3 and tRNA during bacterial translation initiation, Cell, 167, 133-144.e13, doi: 10.1016/j.cell.2016.08.074.
  21. Laursen, B. S., Sørensen, H. P., Mortensen, K. K., and Sperling-Petersen, H. U. (2005) Initiation of protein synthesis in bacteria, Microbiol. Mol. Biol. Rev., 69, 101-123, doi: 10.1128/mmbr.69.1.101-123.2005.
  22. Yamamoto, H., Wittek, D., Gupta, R., Qin, B., Ueda, T., Krause, R., Yamamoto, K., Albrecht, R., Pech, M., and Nierhaus, K. H. (2016) 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria, Proc. Natl. Acad. Sci. USA, 113, E1180-E1189, doi: 10.1073/pnas.1524554113.
  23. Zheng, X., Hu, G.-Q., She, Z.-S., and Zhu, H. (2011) Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes, BMC Genomics, 12, 361, doi: 10.1186/1471-2164-12-361.
  24. Leiva, L. E., and Katz, A. (2022) Regulation of Leaderless mRNA Translation in Bacteria, Microorganisms, 10, 723, doi: 10.3390/microorganisms10040723.
  25. Temperley, R. J., Wydro, M., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Human mitochondrial mRNAs - like members of all families, similar but different, Biochim. Biophys. Acta, 1797, 1081-1085, doi: 10.1016/j.bbabio.2010.02.036.
  26. Kazama, T., Yagi, Y., Toriyama, K., and Nakamura, T. (2013) Heterogeneity of the 5′-end in plant mRNA may be involved in mitochondrial translation, Front. Plant Sci., 4, 517, doi: 10.3389/fpls.2013.00517.
  27. Soto, I., Couvillion, M., Hansen, K. G., McShane, E., Moran, J. C., Barrientos, A., and Churchman, L. S. (2022) Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes, Genome Biol., 23, 170, doi: 10.1186/s13059-022-02732-9.
  28. Marzi, S., Knight, W., Brandi, L., Caserta, E., Soboleva, N., Hill, W. E., Gualerzi, C. O., and Lodmell, J. S. (2003) Ribosomal localization of translation initiation factor IF2, RNA, 9, 958-969, doi: 10.1261/rna.2116303.
  29. Spencer, A. C., and Spremulli, L. L. (2005) The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit, Biochim. Biophys. Acta, 1750, 69-81, doi: 10.1016/j.bbapap.2005.03.009.
  30. Kummer, E., Leibundgut, M., Rackham, O., Lee, R. G., Boehringer, D., Filipovska, A., and Ban, N. (2018) Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM, Nature, 560, 263-267, doi: 10.1038/s41586-018-0373-y.
  31. Gaur, R., Grasso, D., Datta, P. P., Krishna, P. D. V., Das, G., Spencer, A., Agrawal, R. K., Spremulli, L., and Varshney, U. (2008) A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors, Mol. Cell, 29, 180-190, doi: 10.1016/j.molcel.2007.11.021.
  32. Yassin, A. S., Haque, Md. E., Datta, P. P., Elmore, K., Banavali, N. K., Spremulli, L. L., and Agrawal, R. K. (2011) Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1, Proc. Natl. Acad. Sci. USA, 108, 3918-3923, doi: 10.1073/pnas.1017425108.
  33. Remes, C., Khawaja, A., Pearce, S. F., Dinan, A. M., Gopalakrishna, S., Cipullo, M., Kyriakidis, V., Zhang, J., Dopico, X. C., Yukhnovets, O., Atanassov, I., Firth, A. E., Cooperman, B., and Rorbach, J. (2023) Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria, Nucleic Acids Res., 51, 891-907, doi: 10.1093/nar/gkac1233.
  34. Luo, Y., Su, R., Wang, Y., Xie, W., Liu, Z., and Huang, Y. (2019) Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation, FEBS J., 286, 4542-4553, doi: 10.1111/febs.15021.
  35. Ostojić, J., Panozzo, C., Bourand-Plantefol, A., Herbert, C. J., Dujardin, G., and Bonnefoy, N. (2016) Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria, Nucleic Acids Res., 44, 5785-5797, doi: 10.1093/nar/gkw490.
  36. Koc, E. C., and Spremulli, L. L. (2002) Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs, J. Biol. Chem., 277, 35541-35549, doi: 10.1074/jbc.M202498200.
  37. Ayyub, S. A., Dobriyal, D., and Varshney, U. (2017) Contributions of the N-and C-terminal domains of initiation factor 3 to its functions in the fidelity of initiation and antiassociation of the ribosomal subunits, J. Bacteriol., 199, e00051-17, doi: 10.1128/JB.00051-17.
  38. Koripella, R. K., Sharma, M. R., Haque, M. E., Risteff, P., Spremulli, L. L., and Agrawal, R. K. (2019) Structure of human mitochondrial translation initiation factor 3 bound to the small ribosomal subunit, iScience, 12, 76-86, doi: 10.1016/j.isci.2018.12.030.
  39. Haque, M. E., Grasso, D., and Spremulli, L. L. (2008) The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: Evolution of terminal extensions in IF3mt, Nucleic Acids Res., 36, 589-597, doi: 10.1093/nar/gkm1072.
  40. Derbikova, K., Kuzmenko, A., Levitskii, S., Klimontova, M., Chicherin, I., Baleva, M., Krasheninnikov, I., and Kamenski, P. (2018) Biological and evolutionary significance of terminal extensions of mitochondrial translation initiation factor 3, IJMS, 19, 3861, doi: 10.3390/ijms19123861.
  41. Springer, M., Graffe, M., and Grunberg-Manago, M. (1977) Characterization of an E. coli mutant with a thermolabile initiation factor IF3 activity, Mol. Gen. Genet., 151, 17-26, doi: 10.1007/BF00446908.
  42. Kuzmenko, A., Derbikova, K., Salvatori, R., Tankov, S., Atkinson, G. C., Tenson, T., Ott, M., Kamenski, P., and Hauryliuk, V. (2016) Aim-less translation: Loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis, Sci. Rep., 6, 18749, doi: 10.1038/srep18749.
  43. Chicherin, I., Levitskii, S., Baleva, M. V., Krasheninnikov, I. A., Patrushev, M. V., and Kamenski, P. (2020) Yeast mitochondrial translation initiation factor 3 interacts with pet111p to promote COX2 mRNA translation, Int. J. Mol. Sci., 21, 3414, doi: 10.3390/ijms21103414.
  44. Chicherin, I. V., Baleva, M. V., Levitskii, S. A., Dashinimaev, E. B., Krasheninnikov, I. A., and Kamenski, P. (2020) Initiation factor 3 is dispensable for mitochondrial translation in cultured human cells, Sci. Rep., 10, 7110, doi: 10.1038/s41598-020-64139-5.
  45. Rudler, D. L., Hughes, L. A., Perks, K. L., Richman, T. R., Kuznetsova, I., Ermer, J. A., Abudulai, L. N., Shearwood, A. M. J., Viola, H. M., Hool, L. C., Siira, S. J., Rackham, O., and Filipovska, A. (2019) Fidelity of translation initiation is required for coordinated respiratory complex assembly, Sci. Adv., 5, eaay2118, doi: 10.1126/sciadv.aay2118.
  46. Gu, Y., Mao, Y., Jia, L., Dong, L., and Qian, S.-B. (2021) Bi-directional ribosome scanning controls the stringency of start codon selection, Nat. Commun., 12, 6604, doi: 10.1038/s41467-021-26923-3.
  47. Herbert, C. J., Labarre-Mariotte, S., Cornu, D., Sophie, C., Panozzo, C., Michel, T., Dujardin, G., and Bonnefoy, N. (2021) Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria, Nucleic Acids Res., 49, 11145-11166, doi: 10.1093/nar/gkab789.
  48. Haastrup, M. O., Vikramdeo, K. S., Singh, S., Singh, A. P., and Dasgupta, S. (2023) The journey of mitochondrial protein import and the roadmap to follow, Int. J. Mol. Sci., 24, 2479, doi: 10.3390/ijms24032479.
  49. Desai, N., Brown, A., Amunts, A., and Ramakrishnan, V. (2017) The structure of the yeast mitochondrial ribosome, Science, 355, 528-531, doi: 10.1126/science.aal2415.
  50. Zamudio-Ochoa, A., Camacho-Villasana, Y., García-Guerrero, A. E., and Pérez-Martínez, X. (2014) The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast, RNA Biol., 11, 953-967, doi: 10.4161/rna.29780.
  51. Zambrano, A., Fontanesi, F., Solans, A., de Oliveira, R. L., Fox, T. D., Tzagoloff, A., and Barrientos, A. (2007) Aberrant translation of cytochrome c oxidase subunit 1 mRNA species in the absence of Mss51p in the yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 18, 523-535, doi: 10.1091/mbc.e06-09-0803.
  52. Jones, J. L., Hofmann, K. B., Cowan, A. T., Temiakov, D., Cramer, P., and Anikin, M. (2019) Yeast mitochondrial protein Pet111p binds directly to two distinct targets in COX2 mRNA, suggesting a mechanism of translational activation, J. Biol. Chem., 294, 7528-7536, doi: 10.1074/jbc.RA118.005355.
  53. Brown, N. G., Costanzo, M. C., and Fox, T. D. (1994) Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae, Mol. Cell. Biol., 14, 1045-1053, doi: 10.1128/MCB.14.2.1045.
  54. Kaspar, B. J., Bifano, A. L., and Caprara, M. G. (2008) A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria, Nucleic Acids Res., 36, 2958-2968, doi: 10.1093/nar/gkn045.
  55. Salvatori, R., Kehrein, K., Singh, A. P., Aftab, W., Möller-Hergt, B. V., Forne, I., Imhof, A., and Ott, M. (2020) Molecular wiring of a mitochondrial translational feedback loop, Mol. Cell, 77, 887-900.e5, doi: 10.1016/j.molcel.2019.11.019.
  56. Zeng, X., Hourset, A., and Tzagoloff, A. (2007) The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor, Genetics, 175, 55-63, doi: 10.1534/genetics.106.065821.
  57. Seshadri, S. R., Banarjee, C., Barros, M. H., and Fontanesi, F. (2020) The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis, Nucleic Acids Res., 48, 6759-6774, doi: 10.1093/nar/gkaa424.
  58. Tang, J. X., Thompson, K., Taylor, R. W., and Oláhová, M. (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways, Int. J. Mol. Sci., 21, 3820, doi: 10.3390/ijms21113820.
  59. Fontanesi, F., Clemente, P., and Barrientos, A. (2011) Cox25 teams up with Mss51, Ssc1, and Cox14 to regulate mitochondrial cytochrome c oxidase subunit 1 expression and Assembly in Saccharomyces cerevisiae, J. Biol. Chem., 286a, 555-566, doi: 10.1074/jbc.M110.188805.
  60. Barrientos, A., Zambrano, A., and Tzagoloff, A. (2004) Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae, EMBO J., 23, 3472-3482, doi: 10.1038/sj.emboj.7600358.
  61. Chujo, T., Ohira, T., Sakaguchi, Y., Goshima, N., Nomura, N., Nagao, A., and Suzuki, T. (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria, Nucleic Acids Res., 40, 8033-8047, doi: 10.1093/nar/gks506.
  62. Lagouge, M., Mourier, A., Lee, H. J., Spåhr, H., Wai, T., Kukat, C., Ramos, E. C., Motori, E., Busch, J. D., Siira, S., German Mouse Clinic Consortium, Kremmer, E., Filipovska, A., and Larsson, N.-G. (2015) SLIRP regulates the rate of mitochondrial protein synthesis and protects LRPPRC from degradation, PLoS Genet., 11, e1005423, doi: 10.1371/journal.pgen.1005423.
  63. Weraarpachai, W., Antonicka, H., Sasarman, F., Seeger, J., Schrank, B., Kolesar, J. E., Lochmüller, H., Chevrette, M., Kaufman, B. A., Horvath, R., and Shoubridge, E. A. (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome, Nat. Genet., 41, 833-837, doi: 10.1038/ng.390.
  64. Richman, T. R., Spåhr, H., Ermer, J. A., Davies, S. M. K., Viola, H. M., Bates, K. A., Papadimitriou, J., Hool, L. C., Rodger, J., Larsson, N.-G., Rackham, O., and Filipovska, A. (2016) Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice, Nat. Commun., 7, 11884, doi: 10.1038/ncomms11884.
  65. Baleva, M. V., Chicherin, I., Piunova, U., Zgoda, V., Patrushev, M. V., Levitskii, S., and Kamenski, P. (2022) Pentatricopeptide protein PTCD2 Regulates COIII translation in mitochondria of the HeLa cell line, Int. J. Mol. Sci., 23, 14241, doi: 10.3390/ijms232214241.
  66. Waltz, F., Nguyen, T.-T., Arrivé, M., Bochler, A., Chicher, J., Hammann, P., Kuhn, L., Quadrado, M., Mireau, H., Hashem, Y., and Giegé, P. (2019) Small is big in Arabidopsis mitochondrial ribosome, Nat. Plants, 5, 106-117, doi: 10.1038/s41477-018-0339-y.
  67. Nguyen, T.-T., Planchard, N., Dahan, J., Arnal, N., Balzergue, S., Benamar, A., Bertin, P., Brunaud, V., Dargel-Graffin, C., Macherel, D., Martin-Magniette, M.-L., Quadrado, M., Namy, O., and Mireau, H. (2021) A case of gene fragmentation in plant mitochondria fixed by the selection of a compensatory restorer of fertility-like PPR gene, Mol. Biol. Evol., 38, 3445-3458, doi: 10.1093/molbev/msab115.
  68. Matus-Ortega, M. G., Cárdenas-Monroy, C. A., Flores-Herrera, O., Mendoza-Hernández, G., Miranda, M., González-Pedrajo, B., Vázquez-Meza, H., and Pardo, J. P. (2015) New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae: mitochondrial complexes containing the alternative NADH dehydrogenase, Yeast, 32, 629-641, doi: 10.1002/yea.3086.
  69. Ott, M., and Herrmann, J. M. (2010) Co-translational membrane insertion of mitochondrially encoded proteins, Biochim. Biophys. Acta, 1803, 767-775, doi: 10.1016/j.bbamcr.2009.11.010.
  70. Bieri, P., Greber, B. J., and Ban, N. (2018) High-resolution structures of mitochondrial ribosomes and their functional implications, Curr. Opin. Struct. Biol., 49, 44-53, doi: 10.1016/j.sbi.2017.12.009.
  71. Pfeffer, S., Woellhaf, M. W., Herrmann, J. M., and Förster, F. (2015) Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography, Nat. Commun., 6, 6019, doi: 10.1038/ncomms7019.
  72. Ferretti, M. B., and Karbstein, K. (2019) Does functional specialization of ribosomes really exist? RNA, 25, 521-538, doi: 10.1261/rna.069823.118.
  73. Shi, Z., Fujii, K., Kovary, K. M., Genuth, N. R., Röst, H. L., Teruel, M. N., and Barna, M. (2017) Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide, Mol. Cell, 67, 71-83.e7, doi: 10.1016/j.molcel.2017.05.021.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023