Random two-dimensional ensembles of polygonal particles: densification and statistical-geometric properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This study investigates the densities and statistical-geometric characteristics of random packings of regular polygons (with 3 to 21 vertices) on a plane. The initial ensemble was generated using the random sequential adsorption (RSA) method. A densification algorithm for the packing is proposed, which is a modification of the Lubachevsky-Stillinger (LS) method. The final ensemble was obtained by gradually increasing the linear dimensions of two-dimensional particles while keeping the density of the square «box» fixed. The statistical-geometric characteristics and packing density of the final ensemble (for a given number of polygon vertices) were found to be practically independent of the number of particles (for a total number of particles on the order of 10⁴ or more). Data on pair correlation functions were obtained, and the evolution of these functions was analyzed across a wide range of packing densities. At packing densities (area fraction occupied by particles) exceeding 0.65–0.70, characteristic features emerge in these functions, indicating a structural transition analogous to the glass transition in a system of hard disks. Further densification leads to partial «crystallization», which (at densities above 0.80) is clearly visible both in visualized images of the ensemble itself and in the correlation function plots. Overall, the evolution of correlation functions for hard disks and polygons (especially those with more than 6 vertices) exhibits several common patterns. The results of this study are in good agreement with those obtained in other studies using fundamentally different densification algorithms (e.g., sedimentation under gravitational force). This suggests that different algorithms for generating random 2D ensembles generally lead to similar outcomes. It appears that the general structural properties of random two-dimensional systems of convex particles are well reproduced across different generation methods (including computational and «physical» modeling).

Sobre autores

A. Shubin

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: fortran@list.ru
Amundsen St., 101, Yekaterinburg, 620016

Bibliografia

  1. Brouwers H.J.H. A geometric probabilistic approach to random packing of hard disks in a plane // Soft Matter. 2023. V.19. P. 8465–8471. https://doi.org/10.1039/d3sm01254a
  2. Ciesla M., Barbasz J. Random packing of regular polygons and star polygons on a flat two-dimensional surface // Physical Review E. 2014. V.90. P. 022402. https://doi.org/10.1103/PhysRevE.90.022402
  3. Ciesla M., Kubala P., Zhang G. Saturated random packing built of arbitrary polygons under random sequential adsorption protocol //Physical Review E. 2019. V.100. P. 062901-1–062901-7. https://doi.org/10.1103/PhysRevE.100.062901
  4. Zhang G. Precise algorithm to generate random sequential adsorption of hard polygons at saturation // Physical Review E. 2018. V.97. P. 043311(1–5). https://doi.org/10.1103/PhysRevE.97.043311
  5. Ciesla M., Kubala P., Moud A.A. Random sequential adsorption of aligned regular polygons and rounded squares: Transition in the kinetics of packing growth // Physical Review E. 2023. V.107. P. 054904(1–7). https://doi.org/10.1103/PhysRevE.107.054904
  6. Duparcmeur Y.L., Troadec J.P., Gervois A. Random close packing of regular polygons // Journal de Physique I. 1997. V.7. № 10. P. 1181–1189. https://doi.org/10.1051/jp1:1997115
  7. Wang C., Dong K., Yu A. Structural characterization of the packings of granular regular polygons // Physical Review E. 2015. V.92. P. 062203(1–12). https://doi.org/10.1103/PhysRevE.92.062203
  8. Stannarius R., Schulze J. On regular and random two-dimensional packing of crosses // Granular Matter. 2022. V.24. № 25. P. 1–15. https://doi.org/10.1007/s10035-021-01190-7
  9. Aponte D., Estrada N., Bares J., Renouf M., Azema E. Geometric cohesion in two-dimensional systems composed of star-shaped particles // Physical Review E . 2024. V.109. P. 044908-1–044908-11. https://doi.org/10.1103/PhysRevE.109.044908
  10. Shubin A.B. Random ensembles of particles with pentagonal symmetry: densification and properties // Melts. 2025. № 1. P. 8–18. https://doi.org/10.31857/S02350106250102e3
  11. Meng L., Yao X., Zhang X. Two-dimensional densely ordered packings of non-convex bending and assembled rods // Particuology. 2020. V.50. P. 35–42. https://doi.org/10.1016/j.partic.2019.05.003
  12. Atkinson S., Jiao Y., Torquato S. Maximally dense packings of two-dimensional convex and concave noncircular particles // Physical Review E. 2012.V.86. № 3. P. 031302. https://doi.org/10.1103/PhysRevE.86.031302 (1–11).
  13. Shubin A.B. On the Maximum Density of Random Packing of Identical Hard Spheres // Rasplavy (Melts). 1995. № 1. P. 92–97.
  14. Shubin A.B. Concerning the geometric limit of the density of a loose medium modeled by identical spherical particles // J. of Engineering Physics and Thermophysics. 1995. V.68. № 4. P. 460–463. https://doi.org/10.1007/BF00858659
  15. Shubin A.B., Yatsenko S.P. Geometric constraints for the density limit in the two-dimensional model of liquid // Russian Journal of Physical Chemistry A. 1999. V.73. № 1. P. 140–141.
  16. Shubin A.B., Shunyaev K.Yu. Randomensemble of hard disks – limit density and statistical-geometric Properties // Rasplavy (Melts). 2006. № 5. P. 70–76.
  17. Shubin A.B. Structural characteristics of a small group of fixed particles and the maximum density of a random packing of hard spheres // Russian Metallurgy (Metally). 2021. № 2. P. 181–186. https://doi.org/10.1134/S0036029521020245
  18. Lubachevsky B.D., Stillinger F.H. Geometric properties of random disk packings // Journal of Statistical Physics. 1990. V.60. № 5/6. P. 561–583. https://doi.org/10.1007/bf01025983
  19. Zhang G. Precise algorithm to generate random sequential adsorption of hard polygons at saturation // Physical Review E. 2018. V.97. P. 043311(1–5). https://doi.org/10.1103/PhysRevE.97.043311
  20. Jiao Y., Torquato S. Maximally random jammed packings of Platonic solids: Hyperuniform long-range correlations and isostaticity // Physical Review E. 2011. V.84. P. 041309 (1–7). https://doi.org/10.1103/PhysRevE.84.041309
  21. Baranau V., Tallarek U. Relaxation times, jamming densities, and ideal glass transition densities for hard spheres in a wide range of polydispersities // AIP Advances. 2020. V.10. P. 035212(1–12). https://doi.org/10.1063/1.5140365
  22. Jin Y., Puckett J.G., Makse H.A. Statistical theory of correlations in random packings of hard particles // Physical Review E. 2014. V.89. P. 052207(1–9). https://doi.org/10.1103/PhysRevE.89.052207
  23. Donev A., Torquato S., Stillinger F.H., Connelly R. Jamming in hard sphere and disk packings // J. of Applied Physics. 2004. V.95. № 3. P. 989–999. https://doi.org/10.1063/1.1633647
  24. Blumenfeld R. Disorder criterion and explicit solution for the disc random packing problem // Physical Review Letters. 2021. V.127. P. 118002(1–5). https://doi.org/10.1103/PhysRevLett.127.118002
  25. Xu Y., Bares J., Zhao Y., Behringer R.P. Jamming Transition: Heptagons, Pentagons, and Discs // EPJ Web of Conferences. 2017. V.140. P. 06010(1–4). https://doi.org/10.1051/epjconf/201714006010
  26. Zhao Y., Bares J., Zheng H., Bester C.S., Xu Y., Socolar J.E.S. Behringer R.P. Jamming transition in non-spherical particle systems: pentagons versus disks // Granular Matter. 2019. V.21:90. P. 1–8. https://doi.org/10.1007/s10035-019-0940-4
  27. Kamien R.D., Liu A.J. Why is random close packing reproducible? // Physical Review Letters. 2007. V.99. P. 155501(1–4). https://doi.org/10.1103/PhysRevLett.99.155501
  28. Bayer M., Brader J., Ebert F., Lange E., Fuchs M., Maret G., Schilling R.,Sperl M., Wittmer J.P. Dynamic glass transition in two dimensions // Physical Review E. 2007. V.76. P. 011508(1–14). https://doi.org/10.1103/PhysRevE.76.011508
  29. Xu Y., Bares J., Zhao Y., Behringer R.P. Jamming transition: heptagons, pentagons, and discs // EPJ Web of Conferences. 2017. V.140. P. 06010(1–4). https://doi.org/10.1051/epjconf/201714006010
  30. Speedy R.J. On the reproducibility of glasses // J. of Chemical Physics.1994. V.100. P. 6684–6691. https://doi.org/10.1063/1.467028

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025