Magnetic aerogels based on reduced graphite oxide – sorbents of the carcinogenic compound K2Cr2O7

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Nanocomposites based on graphite oxide airgel and superparamagnetic iron oxide nanoparticles (rGO ⋅ Fe3O4) are able to sorb potassium dichromate from aqueous solutions. The superparamagnetic nature of the composite makes it possible to extract it after the completion of the sorption process from the pollutant solution using an external magnetic field. The dependence of the degree of sorption of potassium dichromate by aerogels of the composition rGO ⋅ Fe3O4 on the mass of the sorbent, acidity, and temperature of the medium was studied. It has been shown that in order to increase the degree of potassium dichromate sorption by the rGO ⋅ Fe3O4 magnetic airgel, the process is best carried out at room temperature in media with low pH values. The results obtained make it possible to propose airgels based on graphite oxide and rGO ⋅ Fe3O4 iron oxide nanoparticles as environmentally friendly sorbents for water purification from the carcinogenic substance potassium dichromate. The proposed materials after the end of the sorption process can be completely removed from the reaction medium using an external magnetic field, thereby preventing their action as pollutants. It is important to note that the described 3D structures based on graphite oxide and nanoparticles of superparamagnetic iron oxide Fe3O4 are of practical importance for the treatment of wastewater from enterprises using an oxidative method for removing phenols, cresols, and cyan-containing substances from impurities using potassium dichromate and sulfuric acid.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Eremina

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: ea_er@mail.ru
Ресей, Moscow

A. Dobrovolskii

Lomonosov Moscow State University

Email: ea_er@mail.ru
Ресей, Moscow

I. Lemesh

Lomonosov Moscow State University

Email: ea_er@mail.ru
Ресей, Moscow

A. Kaplin

Lomonosov Moscow State University; Semenov Research Center of Chemical Physics, Russian Academy of Sciences

Email: ea_er@mail.ru
Ресей, Moscow; Moscow

A. Grigoryeva

Lomonosov Moscow State University

Email: ea_er@mail.ru
Ресей, Moscow

E. Gudilin

Lomonosov Moscow State University

Email: ea_er@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Neskromnaya Е.А., Babkin А.В., Zakharchenko E.A., Morozov Yu.G., Kabachkov E.N., Shulga E.M. // Russ. J. Phys. Chem. B. 17, 818. (2023)
  2. Brodie B.C., Phil. Trans. R. Soc. Lond. 149, 249. (1859).
  3. Hongcai Gao, Hongwei Duan. Biosens. Bioelectron. 65, 404. (2015).
  4. Hummers W.S., Offeman R.E. J. Am. Chem. Soc. 80, 1339. (1958).
  5. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A. ACS Nano. 4, 4806. (2010).
  6. Wufeng Chen, Lifeng Yan. Nanoscale. 3, 3132. (2011).
  7. Kondratowicz I., Żelechowska K., Nadolska M., Jażdżewska A. et al, Colloids Surf., A. 528, 65. (2011).
  8. Iony Y.V., Voronov V.V., Naumkin А.V. J. Inorg. Chemistry. 60, 783. (2015).
  9. Ioni Yu., Buslaeva E., Gubin S. Mater. Today. 3, 209. (2016).
  10. Magdalena A.G., Silva I.M.B., Marques R.F.C., Pipi A.R.F. et al. J. Phys. Chem. Solids. 113, 5. (2018).
  11. Donglin Zhao, Qi Zhang, Han Xuan, Yan Chen et. al. J. Colloid Interface Sci. 506, 300. (2017).
  12. Yue Yang, Yanrong Zhao, Shihan Sun, Xueyu Zhang et al. Materials Research Bulletin. 73, 401. (2017).
  13. Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li et al. Electrochimica Acta.194, 219. (2016).
  14. Jie-Ping Fana, Bing Zhenga, Yu Qina, Dan Yanga et al. Applied Surface Science. 364, 332. (2016).
  15. Yong Li, Ruofang Zhang, Xike Tian, Chao Yang et al. Applied Surface Science. 369, 11. (2016).
  16. Yu Wang, Yuhong Jin, Chenchen Zhao, Erzhuang Pan et al., Applied Surface Science. 458, 1035. (2018).
  17. Nur Hidayati Othman, Nur Hashimah Alias, Munawar Zaman Shahruddin, Noor Fitrah Abu Bakar et al., Journal of Environmental Chemical Engineering. 6, 2803. (2018).
  18. Shraddha Mishra, Ashish Yadav, Nishith Verma.Chemical Engineering Journal. 326, 987. (2017).
  19. Zohreh Dahaghin, Hassan Zavvar Mousavi, S. Maryam Sajjadi. Journal of Molecular Liquids. 231, 386. (2017).
  20. Donglin Zhao, Qi Zhang, Han Xuan, Yan Chen et al., Applied Surface Science. 444, 691. (2018).
  21. Babkin А.В., Neskromnaya Е.А., Burakov А.Е., Burakova I.V. Bulletin of TSTU. 24, 79. (2018)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Results of X-ray phase analysis of samples containing graphite and iron oxide nanoparticles: a – graphite, b – GO, c – Fe3O4 nanoparticles, d – rGO ⋅ Fe3O4 aerogel.

Жүктеу (272KB)
3. Fig. 2. Results of Raman spectroscopy: a – graphite, b – GO, c – rGO ⋅ Fe3O4 aerogel.

Жүктеу (188KB)
4. Fig. 3. TEM images of nanoparticles of the original Fe3O4 (a) and in the composition of an aerogel based on graphite oxide and iron oxide (b).

Жүктеу (164KB)
5. Fig. 4. Size distribution of Fe3O4 nanoparticles (columns) in free form (a) and in rGO ⋅ Fe3O4 aerogel (b). Solid curves are the Gaussian function of the particle size distribution. The average particle size is 16.35 (a) and 18.36 nm (b).

Жүктеу (183KB)
6. Fig. 5. Dependences of saturation magnetization, normalized to the sample mass, on the magnetic field for Fe3O4 nanoparticles (1) and aerogel of the rGO ⋅ Fe3O4 composition (2).

Жүктеу (95KB)
7. Fig. 6. Results of thermogravimetric analysis of aerogel of the composition rGO ⋅ Fe3O4.

Жүктеу (106KB)
8. Fig. 7. Dependence of the degree of potassium dichromate sorption on time at different pH values ​​(a), K2Cr2O7 concentrations of 55.56 (1) and 166.67 mg/l (2) with a sorbent mass of 15 mg (b) and a sorbent mass of 5 (1) and 15 g (2) with a dichromate concentration of 166.67 mg/l (c).

Жүктеу (175KB)
9. Fig. 8. Dependence of the degree of potassium dichromate sorption on temperature: T = 45 °C (■) and 25 °C (•).

Жүктеу (83KB)

© Russian Academy of Sciences, 2024