Pecularities of DNA binding to two-dimensional crystals of bacterial protein Dps from Escherichia coli based on molecular dynamics data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, using coarse-grained molecular modeling methods, the interactions of DNA-binding protein from starved cells (Dps) of the bacterium Escherichia coli with DNA sections of various lengths and composition were investigated. The binding features in two-dimensional crystals of the Dps protein were studied. Using free energy search methods – thermodynamic integration and linear interaction energy – the most favorable conditions for the binding of DNA and Dps were determined.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Tereshkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ramm@mail.ru
Ресей, Moscow

К. Tereshkina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
Ресей, Moscow

N. Loiko

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: ramm@mail.ru
Ресей, Moscow

V. Kovalenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
Ресей, Moscow

Y. Krupyanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ramm@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. A.G. Tkachenko. Molecular Mechanisms of Stress Responses in Microorganisms. Yekaterinburg: Ural Branch of RAS (2012). [in Russian].
  2. H.M. Amemiya, J. Schroeder, P.L. Freddolino. Transcription 12, 182 (2021). https://doi.org/10.1080/21541264.2021.1973865
  3. A. Minsky, E. Shimoni, D. Frenkiel-Krispin. Nat Rev Mol Cell Biol. 3, 50 (2002). https://doi.org/10.1038/nrm700
  4. N. Loiko, Y. Danilova, A. Moiseenko et al. PLoS One 15, e0231562 (2020). https://doi.org/10.1371/journal.pone.0231562
  5. Y.F. Krupyanskii. Russian Journal of Physical Chemistry B. 15, 326 (2021). https://doi.org/10.31857/S0207401X21030079
  6. Y.F. Krupyanskii, V.V. Kovalenko, N.G. Loiko et al. Biophysics 67(4), 638 (2022). https://doi.org/10.31857/S0006302922040020
  7. M. Almirón, A. J. Link, D. Furlong, R. Kolter. Genes Dev. 612, 2646 (1992). https://doi.org/10.1101/gad.6.12b.2646
  8. V.O. Karas, I. Westerlaken, A.S. Meyer. J. Bacteriol. 197, 3206 (2015). https://doi.org/10.1128/jb.00650-15
  9. K. Orban, S.E. Finkel. J. Bacteriol. 204, e00036-22 (2022). https://doi.org/10.1128/jb.00036-22
  10. R.A. Grant, D.J. Filman, S.E. Finkel et al. Nat. Struct. Biol. 5, 294 (1998). https://doi.org/10.1038/nsb0498-294
  11. D. Frenkiel-Krispin and A. Minsky. J. Struct. Biol. 156, 311 (2006). https://doi.org/10.1016/j.jsb.2006.05.014
  12. N.G. Loiko, N.E. Suzina, V.S. Soina et al. Microbiology 86, 714 (2017). https://www.elibrary.ru/item.asp?id=35516020
  13. V. Kovalenko, A. Popov, G. Santoni et al. Acta Cryst. F76, 568 (2020). https://doi.org/10.1107/S2053230X20012571
  14. D.O. Sinitsyn, N.G. Loiko, S.K. Gularyan et al. Russian Journal of Physical Chemistry B. 11, 833 (2017). https://doi.org/10.1134%2FS1990793117050128
  15. A. Moiseenko, N. Loiko, K. Tereshkina et al. Biochemical and Biophysical Research Communications 517, 463 (2019). https://doi.org/10.1016%2Fj.bbrc.2019.07.103
  16. P. Ceci, S. Cellai, E. Falvo et al. Nucleic Acids Res. 32(19), 5935 (2004). https://doi.org/10.1093/nar/gkh915
  17. A. Minsky, S. G. Wolf, D. Frenkiel et al. Nature 400, 83 (1999). https://doi.org/10.1038/21918.
  18. E.V. Tereshkin, K.B. Tereshkina and Y.F. Krupyanskii. JPCS 2056(1), 012016 (2021). http://dx.doi.org/10.1088/1742-6596/2056/1/012016
  19. N.G. Loiko, E.V. Tereshkin, V.V. Kovalenko et al. Microbiology 92(1), S78 (2023). https://doi.org/10.1134/S0026261723603640
  20. E. Tereshkin, K. Tereshkina, N. Loiko et al. J Biomol Struct Dyn. 37, 2600 (2018). http://dx.doi.org/10.1080/07391102.2018.1492458
  21. E.V. Tereshkin, K.B. Tereshkina, V.V. Kovalenko et al. Russian Journal of Physical Chemistry B. 13(5), 769 (2019). http://dx.doi.org/10.1134/S199079311905021X
  22. E. Tereshkin, K. Tereshkina, N. Loiko et al. Russian Journal of Physical Chemistry B. 17, 608 (2023). http://dx.doi.org/10.1134/S1990793123030132
  23. J.J. Uusitalo, H.I. Ing´olfsson, P. Akhshi, et al., Journal of chemical theory and computation 11, 3932 (2015). https://doi.org/10.1021/acs.jctc.5b00286
  24. E.V. Tereshkin, K.B. Tereshkina, Y.F. Krupyanskii. Supercomputing Frontiers and Innovations 9, 33 (2022). https://doi.org/10.14529/jsfi220203
  25. S.S. Antipov, M.N. Tutukina, E.V. Preobrazhenskaya. et al., PLoS One 12, e0182800 (2017). https://doi.org/10.1371/journal.pone.0182800
  26. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl. Theory Comput. 4, 435 (2008). https://doi.org/10.1021/ct700301q
  27. K.R. Hadley, C. McCabe. Mol. Simul. 38, 671 (2012). https://doi.org/10.1080/08927022.2012.671942
  28. G. Bussi, D. Donadio, M. Parrinello. J Chem Phys. 126(1), 014101 (2007). https://doi.org/10.1063/1.2408420.
  29. J. Aqvist, J. Marelius. Comb. Chem. High Throughput Screening. 4, 613 (2001). https://doi.org/10.2174/1386207013330661
  30. A. Amadei, A.B. Linssen, H.J. Berendsen. Proteins. 17(4), 412 (1993). https://doi.org/10.1002/prot.340170408
  31. T.A. Azam, A. Ishihama. J Biol Chem. 274(46), 33105 (1999). https://doi.org/10.1074/jbc.274.46.33105.
  32. L. Jen-Jacobson. Biopolymers. 44, 153 (1997). https://doi.org/10.1002/(SICI)1097-0282(1997) 44:2<153::AID-BIP4>3.0.CO;2-U
  33. A.A. Anashkina. Biophys Rev. 15, 1007 (2023). https://doi.org/10.1007/s12551-023-01137-7
  34. J.L. Miller, P.A. Kollman. Physical Chemistry 100(20), 8587 (1996). https://doi.org/10.1021/jp9605358

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Two-dimensional single-layer crystal of Dps protein with DNA molecules adsorbed on it (the trajectory of motion is calculated on a time interval of 0.6 μs): a, b – top view of the layer with different orientation of DNA molecules, c – side view. DNA molecules are shown as blue strands, N-terminal lysine residues – as red beads. Arrows indicate the sites of DNA binding by the N-termini of the protein. Water molecules are not shown.

Жүктеу (412KB)
3. Fig. 2. a – Root-mean-square fluctuations of atoms in four identical 165 bp DNA molecules M165 (each molecule corresponds to one of the curves) during adsorption onto different regions of a 2D Dps crystal. The abscissa axis shows the numbers of nucleotide pairs, starting from the 5′ end of DNA; b – the average number of contacts between DNA atoms (per 100 bp of DNA) and lysine residues. The numbers are the numbers of lysine residues in the primary sequence of the Dps protein.

Жүктеу (299KB)
4. Fig. 3. Left – structure of nanocrystals consisting of seven Dps protein molecules; from top to bottom: without DNA, in the presence of 24 bp (L24), 165 bp (M165), and 330 bp (YHIS330) DNA. Top right – dependence of the change in the average DNA-Dps interaction energy on time for DNA L24 (1), M165 (2), and YHIS330 (3), calculated per 1 bp. Below on the right – probability distributions for the average number of contacts between DNA atoms and N-terminal lysine residues (4), and other lysine residues (5), calculated per 100 bp of DNA, corresponding to the structures on the left.

Жүктеу (834KB)
5. Fig. 4. Changes in the radii of DNA gyration depending on time in water and on a two-dimensional protein support for DNA molecules DPS26 (26 bp), ATCG24 (24 bp) and YHIS24 (24 bp). The arrow at the top indicates the time of transition from the aqueous environment to the protein support.

Жүктеу (217KB)

© Russian Academy of Sciences, 2024