Аналитический обзор конфиденциального искусственного интеллекта: методы и алгоритмы реализации в облачных вычислениях
- Авторы: Ширяев Е.М.1, Назаров А.С.1, Кучеров Н.Н.1, Бабенко М.Г.1,2
-
Учреждения:
- Северо-Кавказский федеральный университет
- Институт системного программирования РАН им. В. П. Иванникова
- Выпуск: № 4 (2024)
- Страницы: 27-40
- Раздел: ПРОГРАММНАЯ ИНЖЕНЕРИЯ, ТЕСТИРОВАНИЕ И ВЕРИФИКАЦИЯ ПРОГРАММ
- URL: https://rjeid.com/0132-3474/article/view/675688
- DOI: https://doi.org/10.31857/S0132347424040036
- EDN: https://elibrary.ru/PTIGVO
- ID: 675688
Цитировать
Аннотация
Технологии искусственного интеллекта и облачных систем в последнее время активно развиваются и внедряются. В связи с этим обострился вопрос их совместного использования, актуальный уже несколько лет. Проблема сохранения конфиденциальности данных в облачных вычислениях приобрела статус критической задолго до возникновения необходимости их совместного использования с искусственным интеллектом, который сделал ее еще более сложной. В данной статье представлен обзор как самих методов искусственного интеллекта и облачных вычислений, так и методов обеспечения конфиденциальности данных. В обзоре рассмотрены методы, использующие дифференциальную конфиденциальность; схемы разделения секрета; гомоморфное шифрование; гибридные методы. Проведенное исследование показало, что каждый рассмотренный метод имеет свои плюсы и минусы, обозначенные в работе, однако универсальное решение отсутствует. Было установлено, что теоретические модели гибридных методов, основанных на схемах разделения секрета и полностью гомоморфном шифровании, позволяют существенно повысить конфиденциальность обработки данных с использованием искусственного интеллекта.
Об авторах
Е. М. Ширяев
Северо-Кавказский федеральный университет
Автор, ответственный за переписку.
Email: eshiriaev@ncfu.ru
Россия, 355017 Ставрополь, ул. Пушкина, д. 1
А. С. Назаров
Северо-Кавказский федеральный университет
Email: anazarov@ncfu.ru
Россия, 355017 Ставрополь, ул. Пушкина, д. 1
Н. Н. Кучеров
Северо-Кавказский федеральный университет
Email: nkucherov@ncfu.ru
Россия, 355017 Ставрополь, ул. Пушкина, д. 1
М. Г. Бабенко
Северо-Кавказский федеральный университет; Институт системного программирования РАН им. В. П. Иванникова
Email: mgbabenko@ncfu.ru
Россия, 355017 Ставрополь, ул. Пушкина, д. 1; 109004 Москва, ул. А. Солженицына, д. 25
Список литературы
- Brown T. et al. Language models are few-shot learners // Advances in neural information processing systems. 2020. V. 33. P. 1877–1901.
- OpenAI, GPT-4 Technical Report. arXiv, 27 март 2023 г. https://doi.org/10.48550/arXiv.2303.08774
- Douligeris C., Mitrokotsa A. DDoS attacks and defense mechanisms: classification and state-of-the-art // Computer networks. 2004. V. 44. № 5. P. 643–666.
- Beimel A. Secret-Sharing Schemes: A Survey // Coding and Cryptology, Y.M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 2011. P. 11–46. https://doi.org/10.1007/978-3-642-20901-7_2
- Mahesh B. Machine learning algorithms-a review // International Journal of Science and Research (IJSR). [Internet]. 2020. V. 9. № 1. P. 381–386.
- Kaelbling L.P., Littman M.L., Moore A.W. Reinforcement learning: A survey // Journal of artificial intelligence research. 1996. V. 4. P. 237–285.
- Srinivas M., Patnaik L.M. Genetic algorithms: A survey // Computer. 1994. V. 27. № 6. P. 17–26.
- Spragins J. Learning without a teacher // IEEE Transactions on Information Theory. 1996. V. 12. № 2. P. 223–230.
- Liu B. Supervised Learning // Web Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. P. 63–132. https://doi.org/10.1007/978-3-642-19460-3_3
- Wang S.-C. Artificial Neural Network // Interdisciplinary Computing in Java Programming. Boston, MA: Springer US, 2003. P. 81–100. https://doi.org/10.1007/978-1-4615-0377-4_5
- Park H., Kim S. Chapter Three – Hardware accelerator systems for artificial intelligence and machine learning // Advances in Computers. V. 122, S. Kim and G.C. Deka, Eds., in Hardware Accelerator Systems for Artificial Intelligence and Machine Learning. V. 122. Elsevier, 2021. P. 51–95. https://doi.org/10.1016/bs.adcom.2020.11.005
- Hwang D. H., Han C.Y., Oh H.W., Lee S.E. ASimOV: A Framework for Simulation and Optimization of an Embedded AI Accelerator // Micromachines. 2021. V. 12. № 7. https://doi.org/10.3390/mi12070838
- Mishra A., Yadav P., Kim S. Artificial Intelligence Accelerators // Artificial Intelligence and Hardware Accelerators, A. Mishra, J. Cha, H. Park, and S. Kim, Eds. Cham: Springer International Publishing, 2023. P. 1–52. https://doi.org/10.1007/978-3-031-22170-5_1
- Carminati M., Scandurra G. Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation // Review of Scientific Instruments. 2021. V. 92.№ 9. https://pubs.aip.org/aip/rsi/article-abstract/ 92/9/091501/1030652
- Shawash J., Selviah D.R. Real-time nonlinear parameter estimation using the Levenberg–Marquardt algorithm on field programmable gate arrays // IEEE Transactions on industrial electronics. 2012. V. 60. № 1. P. 170–176.
- Ruiz-Rosero J., Ramirez-Gonzalez G., Khanna R. Field programmable gate array applications – A scientometric review // Computation. 2019. V. 7. № 4. P. 63.
- Mellit A., Kalogirou S.A. MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives // Energy. 2014. V. 70. P. 1–21.
- Goodfellow I., Bengio Y., Courville A. Deep learning. MIT press, 2016. https://books.google.com/books?hl=ru&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Deep+Learning&ots=MNV5aolzSS&sig=waXAS6C-_v-48H2qbW9rMFkEhFY
- Bouvrie J. Notes on convolutional neural networks. 2006. http://web.mit.edu/jvb/www/papers/cnn_tutorial.pdf
- Rawat W., Wang Z. Deep convolutional neural networks for image classification: A comprehensive review // Neural computation. 2017. V. 29; № 9. P. 2352–2449.
- Needham R.M., Herbert A.J. The Cambridge distributed computing system, 1983.
- Adiga N.R. et al. An overview of the BlueGene/L supercomputer // SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, IEEE, 2002. P. 60–60. https://ieeexplore.ieee.org/abstract/document/1592896/
- Jacob B., Brown M., Fukui K., Trivedi N. Introduction to grid computing // IBM redbooks, 2005. P. 3–6.
- Foster I., Zhao Y., Raicu I., Lu S. Cloud computing and grid computing 360-degree compared // 2008 grid computing environments workshop, Ieee, 2008. P. 1–10. https://ieeexplore.ieee.org/abstract/document/ 4738445/?casa_token=TbNOHOEaljQAAAAA: j6MuEJKmrGL8iCvH-HzRnmI2k5UKn5y1w7hC4MNJanJXZPfiBC_XKLoTFsCImP1RYzyKfRKiCE0
- Cusumano M. Cloud computing and SaaS as new computing platforms // Commun. ACM, April, 2010. V. 53. № 4. P. 27–29. https://doi.org/10.1145/1721654.1721667
- Rodero-Merino L., Vaquero L.M., Caron E., Muresan A., Desprez F. Building safe PaaS clouds: A survey on security in multitenant software platforms // Computers & security. 2012. V. 31. № 1. P. 96–108.
- Bhardwaj S., Jain L., Jain S. Cloud computing: A study of infrastructure as a service (IAAS) // International Journal of engineering and information Technology. 2010. V. 2. № 1. P. 60–63.
- Manvi S.S., Shyam G.K. Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey // Journal of network and computer applications. 2014. V. 41. P. 424–440.
- Lehner W., Sattler K.-U. Database as a service (DBaaS) // 2010 IEEE 26th International Conference on Data Engineering (ICDE2010), IEEE, 2010. P. 1216–1217. https://ieeexplore.ieee.org/abstract/document/ 5447723/?casa_token=uaXogPZV0C0AAAAA: 4Dg_40-GvhUsuHXFKUOgxZ_ZyGlCOqjcZtpRoK6UosB-k-_Wh5wAmJIBtHYRE9OLXZ1xwVKuLAE
- Meng S., Liu L. Enhanced monitoring-as-a-service for effective cloud management // IEEE Transactions on Computers. 2012. V. 62. № 9. P. 1705–1720.
- Weng Q. et. al. {MLaaS} in the wild: Workload analysis and scheduling in {Large-Scale} heterogeneous {GPU} clusters // 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), 2022. P. 945–960. https://www.usenix.org/conference/nsdi22/presentation/weng
- Bisong E. Google Colaboratory // Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA: Apress, 2019. P. 59–64. https://doi.org/10.1007/978-1-4842-4470-8_7
- H2O AI Cloud. https://h2o.ai/platform/ai-cloud/
- NVIDIA NGC | NVIDIA. https://www.nvidia.com/en-us/gpu-cloud/
- Tang J. Artificial intelligence-based e-commerce platform based on SaaS and neural networks // 2020 Fourth International Conference on Inventive Systems and Control (ICISC). IEEE, 2020. P. 421–424. https://ieeexplore.ieee.org/abstract/document/ 9171193/?casa_token=TmYwFdLDXq0AAAAA:8P5VVcZS_KWCXEnEm8xk2RPMV5kfWF27K9S9O9Z5fYh273EkseT7j0Jf7jZYAMOnPUX0l-5sCbs
- Yathiraju N. Investigating the use of an Artificial Intelligence Model in an ERP Cloud-Based System // International Journal of Electrical, Electronics and Computers. 2022. V. 7. № 2. P. 1–26.
- Mishra S., Tripathi A.R. AI business model: an integrative business approach // J. Innov. Entrep. Dec. 2021. V. 10. № 1. P. 18. https://doi.org/10.1186/s13731-021-00157-5
- Mishra D., Shekhar S. Artificial Intelligence Candidate Recruitment System using Software as a Service (SaaS) Architecture // International Research Journal of Engineering and Technology. 2018. V. 05. № 05. P. 3804–3808.
- Cadario R., Longoni C., Morewedge C.K. Understanding, explaining, and utilizing medical artificial intelligence // Nature human behaviour. 2021. V. 5. № 12. P. 1636–1642.
- Kim M., Song Y., Wang S., Xia Y., Xiang X. Secure logistic regression based on homomorphic encryption: Design and evaluation // JMIR medical informatics. 2018. V. 6. № 2. P. e8805.
- Klonoff D.C. Fog computing and edge computing architectures for processing data from diabetes devices connected to the medical internet of things // Journal of diabetes science and technology. 2017. V. 11. № 4. P. 647–652.
- Kocabas O., Soyata T. Utilizing homomorphic encryption to implement secure and private medical cloud computing // 2015 IEEE8th International Conference on Cloud Computing. IEEE, 2015. P. 540–547.
- Liu R., Rong Y., Peng Z. A review of medical artificial intelligence // Global Health Journal. 2020. V. 4. № 2. P. 42–45.
- Sun X., Zhang P., Sookhak M., Yu J., Xie W. Utilizing fully homomorphic encryption to implement secure medical computation in smart cities // Personal and Ubiquitous Computing. 2017. V. 21. № 5. P. 831–839.
- Kaya O., Schildbach J., AG D.B., Schneider S. Artificial intelligence in banking // Artificial intelligence. 2019. https://www.dbresearch.com/PROD/RPS_ENPROD/PROD0000000000495172/Artificial_intelligence_in_banking%3A_A_lever_for_pr.pdf
- Rahman M., Ming T.H., Baigh T.A., Sarker M. Adoption of artificial intelligence in banking services: an empirical analysis // International Journal of Emerging Markets. 2021. https://www.emerald.com/insight/content/doi/10.1108/IJOEM-06-2020-0724/full/html
- Sadok H., Sakka F., El Maknouzi M.E.H. Artificial intelligence and bank credit analysis: A review // Cogent Economics & Finance. Dec. 2022. V. 10. № 1. P. 2023262. https://doi.org/10.1080/23322039.2021.2023262
- Smith A., Nobanee H. Artificial intelligence: in banking A mini-review // Available at SSRN3539171, 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3539171
- Reis J., Santo P.E., Melão N. Artificial Intelligence in Government Services: A Systematic Literature Review // New Knowledge in Information Systems and Technologies. V. 930. Á. Rocha, H. Adeli, L.P. Reis, and S. Costanzo, Eds., in Advances in Intelligent Systems and Computing. V. 930. Cham: Springer International Publishing. 2019. P. 241–252. https://doi.org/10.1007/978-3-030-16181-1_23
- Valle-Cruz D., Alejandro Ruvalcaba-Gomez E., Sandoval-Almazan R., Ignacio Criado J. A Review of Artificial Intelligence in Government and its Potential from a Public Policy Perspective // Proceedings of the 20th Annual International Conference on Digital Government Research. Dubai United Arab Emirates: ACM, June 2019. P. 91–99. https://doi.org/10.1145/3325112.3325242
- Pitts W. The linear theory of neuron networks: The dynamic problem // The bulletin of mathematical biophysics. 1943. V. 5. P. 23–31.
- Khare S.S., Gajbhiye A.R. Literature Review on Application of Artificial Neural Network (Ann) In Operation of Reservoirs // International Journal of computational Engineering research (IJCER). June 2013. V. 3. № 6. P. 63.
- Seesing A. Evotest: Test case generation using genetic programming and software analysis // Operations Research. 1954. V. 2. P. 393–410.
- Samuel A.L. Machine learning // The Technology Review. 1959. V. 62. № 1. P. 42–45.
- Evreinov Ė.V., Kosarev I. Однородные универсальные вычислительные системы высокой производительности (No Title), 1966. https://cir.nii.ac.jp/crid/1130282272859765760
- Gold E.M. Language identification in the limit // Information and control. 1967. V. 10. № 5. P. 447–474.
- Глушков В.М. Вычислительная система, 1996. https://elibrary.ru/item.asp?id=41074434
- Huang X. Deep-learning based climate downscaling using the super-resolution method, 1981. https://pdfs.semanticscholar.org/cf5c/3b29559ababba5a889444632e1c91d6b78fc.pdf
- Smarr L., Catlett C.E. Metacomputing // Grid Computing, 1st ed., F. Berman, G. Fox, and T. Hey, Eds., Wiley, 2003. P. 825–835. https://doi.org/10.1002/0470867167.ch37
- Buske D., Keith S. GIMPS Finds Another Prime! // Math Horizons. April 2000. V. 7. № 4. P. 19–21. https://doi.org/10.1080/10724117.2000.11975124
- Anderson D.P. Boinc: A system for public-resource computing and storage // Fifth IEEE/ACM international workshop on grid computing. IEEE, 2004. P. 4–10. https://ieeexplore.ieee.org/abstract/document/1382809/ ?casa_token=cjAKtADFAKwAAAAA:-WGH_xmovZAUi-kr_PA-h3nXtuizBL829DPFlC0B6pbcCoApRKDCZLwFWxzfYdT0WauFC5c6EQw1
- Du T., Shanker V. Deep learning for natural language processing // Eecis. Udel. Edu, 2009. P. 1–7.
- Davies E.R. Machine vision: theory, algorithms, practicalities. Elsevier, 2004. https://books.google.com/books?hl=ru&lr=&id=uY-Z3vORugwC&oi=fnd&pg=PP1&dq=Machine+Vision+:+Theory,+Algorithms,+Practicalities&ots=QOl9U9_MBf&sig=w0poN6d3IGeXs4oacagO4MlnxYs
- Mell P., Grance T. The NIST Definition of Cloud Computing // National Institute of Standards and Technology Special Publication. 2011. V. 53. P. 1–7.
- Finkelstein R. Analyzing Trend of Cloud Computing and it’s Enablers using Gartner Strategic Technology, 2004. https://www.researchgate.net/profile/Amol-Adamuthe/ publication/308747055_Analyzing_Trend_of_Cloud_Computing_and_it's_Enablers_using_Gartner_Strategic_Technology/links/59a929d3a6fdcc2398414d6f/Analyzing-Trend-of-Cloud-Computing-and-its-Enablers-using-Gartner-Strategic-Technology.pdf
- A history of cloud computing // Computer Weekly. https://www.computerweekly.com/feature/A-history-of-cloud-computing
- Dolui K., Datta S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing // 2017 Global Internet of Things Summit (GIoTS), IEEE. 2017. P. 1–6.
- OpenFog, OPC Foundation. https://opcfoundation.org/markets-collaboration/openfog/
- Radford A., Narasimhan K., Salimans T., Sutskever I. Improving language understanding by generative pre-training” 2018. https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
- Beaulieu-Jones B.K. et al. Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing // Circ: Cardiovascular Quality and Outcomes. Jul. 2019. V. 12. № 7. P. e005122. https://doi.org/10.1161/CIRCOUTCOMES.118.005122
- Shokri R., Shmatikov V. Privacy-Preserving Deep Learning // Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. Denver Colorado USA: ACM, Oct. 2015. P. 1310–1321. https://doi.org/10.1145/2810103.2813687.
- Shamir A. How to share a secret // Communications of the ACM. 1979. V. 22. № 11. P. 612–613.
- Duan J., Zhou J., Li Y. Privacy-preserving distributed deep learning based on secret sharing // Information Sciences. 2020. V. 527. P. 108–127.
- Akushsky I.A., Yuditsky D.I. Modular arithmetic in residue classes // Soviet Radio, 1968.
- Asmuth С., Bloom J. A modular approach to key safeguarding // IEEE transactions on information theory. 1983. V. 29. № 2. P. 208–210.
- Mignotte M. How to share a secret // Workshop on cryptography. Springer, 1982. P. 371–375.
- Tian T., Wang S., Xiong J., Bi R., Zhou Z., Bhuiyan M.Z.A. Robust and privacy-preserving decentralized deep federated learning training: Focusing on digital healthcare applications // IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023. https://ieeexplore.ieee.org/abstract/document/ 10058838/
- Barzu M., Ţiplea F.L., Drăgan C.C. Compact sequences of co-primes and their applications to the security of CRT-based threshold schemes // Information Sciences. 2013. V. 240. P. 161–172.
- Ge Z., Zhou Z., Guo D., Li Q. Practical Two-party Privacy-preserving Neural Network Based on Secret Sharing. http://arxiv.org/abs/2104.04709
- Paillier P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes // Advances in Cryptology – EUROCRYPT ’99. V. 1592, J. Stern, Ed., in Lecture Notes in Computer Science. V. 1592. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. P. 223–238. https://doi.org/10.1007/3–540–48910-X_16.
- Benaloh J. Dense probabilistic encryption // Proceedings of the workshop on selected areas of cryptography, 1994. P. 120–128. https://sacworkshop.org/proc/SAC_94_006.pdf
- Rivest R. L., Shamir A., Adleman L. A method for obtaining digital signatures and public-key cryptosystems // Commun. ACM. Feb. 1978. V. 21. № 2. P. 120–126. https://doi.org/10.1145/359340.359342
- ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms // IEEE transactions on information theory. 1985. V. 31. № 4. P. 469–472.
- Chen T., Zhong S. Privacy-preserving backpropagation neural network learning // IEEE Transactions on Neural Networks. 2009. V. 20. № 10. P. 1554–1564.
- Gentry C. A fully homomorphic encryption scheme // Stanford university, 2009.
- Gentry C. Computing arbitrary functions of encrypted data // Communications of the ACM. 2010. V. 53. № 3. P. 97–105.
- Gentry C., Halevi S. Implementing gentry’s fully-homomorphic encryption scheme // Advances in Cryptology–EUROCRYPT 2011: 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Tallinn, Estonia, May 15–19, 2011. Proceedings 30, Springer, 2011. P. 129–148.
- Gentry C., Halevi S., Peikert C., Smart N.P. Ring Switching in BGV-Style Homomorphic Encryption // Security and Cryptography for Networks. V. 7485. I. Visconti and R. De Prisco, Eds. Lecture Notes in Computer Science. V. 7485. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. P. 19–37. https://doi.org/10.1007/978-3-642-32928-9_2
- Gentry C., Sahai A., Waters B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based // Annual Cryptology Conference. Springer, 2013. P. 75–92.
- van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.V. Fully homomorphic encryption over the integers // Annual international conference on the theory and applications of cryptographic techniques. Springer, 2010. P. 24–43.
- van Dijk M., Gentry C., Halevi S., Vaikuntanathan V. Fully Homomorphic Encryption over the Integers // Advances in Cryptology – EUROCRYPT 2010. V. 6110. H. Gilbert, Ed., Lecture Notes in Computer Science. V. 6110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 24–43. https://doi.org/10.1007/978-3-642-13190-5_2
- Cheon J. H., Kim A., Kim M., Song Y. Homomorphic encryption for arithmetic of approximate numbers // International conference on the theory and application of cryptology and information security. Springer, 2017. P. 409–437.
- Gilad-Bachrach R., Dowlin N., Laine K., Lauter K., Naehrig M., Wernsing J. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy // International conference on machine learning, PMLR, 2016. P. 201–210. https://proceedings.mlr.press/v48/gilad-bachrach16.html
- van Elsloo T., Patrini G., Ivey-Law H. SEALion: a Framework for Neural Network Inference on Encrypted Data. http://arxiv.org/abs/1904.12840
- TensorFlow. https://www.tensorflow.org/?hl=ru
- Microsoft SEAL. Microsoft. https://github.com/microsoft/SEAL
- Benaissa A., Retiat B., Cebere B., Belfedhal A.E. TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption. http://arxiv.org/abs/2104.03152
- Chabanne H., De Wargny A., Milgram J., Morel C., Prouff E. Privacy-preserving classification on deep neural network // Cryptology ePrint Archive, 2017. https://eprint.iacr.org/2017/035
- Brakerski Z., Gentry C., Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping // ACM Transactions on Computation Theory (TOCT). 2014. V. 6. № 3. P. 1–36.
- Lee J.-W. et al. Privacy-preserving machine learning with fully homomorphic encryption for deep neural network // IEEE Access. 2022. V. 10. P. 30039–30054.
- Ryffel T., Tholoniat P., Pointcheval D., Bach F. ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing. arXiv, October 28, 2021. http://arxiv.org/abs/2006.04593
Дополнительные файлы
