Composite Materials Based on Biocompatible Metal-Organic Framework and Anthocyanins from Hibiscus sabdariffa for Active Food Packaging
- Autores: Pak A.M.1,2, Novikov V.V.2
- 
							Afiliações: 
							- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
 
- Edição: Volume 50, Nº 2 (2024)
- Páginas: 79-84
- Seção: Articles
- URL: https://rjeid.com/0132-344X/article/view/667615
- DOI: https://doi.org/10.31857/S0132344X24020012
- EDN: https://elibrary.ru/OSGKHL
- ID: 667615
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The biocompatible metal-organic framework [Zn4(GA)4(H2O)4] · 4H2O (H2GA = glutamic acid) was used as a container for anthocyanins from Hibiscus sabdariffa in composite films based on kappa-carrageenan and hydroxypropyl methylcellulose. The obtained composite materials showed high antioxidant activity and ability to undergo pH-induced color change upon reactions with gaseous products of pathogen development and, hence, possess the potential for practical application as functional materials for food packaging.
Texto integral
 
												
	                        Sobre autores
A. Pak
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: novikov84@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
V. Novikov
Moscow Institute of Physics and Technology (National Research University)
							Autor responsável pela correspondência
							Email: novikov84@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Yildirim S., Röcker B., Pettersen M. K. et al. // Compr. Rev. Food Sci. Food Saf. 2018. V. 17. № 1. P. 165.
- Ozdemir M., Floros J. D. // Crit. Rev. Food Sci. Nutr. Taylor & Francis, 2004. V. 4. № 3. P. 185.
- Oliveira Filho J. G. de, Braga A. R.C., Oliveira B. R. de et al. // Food Res. Int. 2021. V. 142. P. 110202.
- Khoo H.E., Azlan A., Tang S. T. et al. // Food Nutr. Res. 2017. V. 61. № 1. P. 1361779.
- Etxabide A., Kilmartin P. A., Maté J. I. // Food Control. 2021. V. 121. P. 107645.
- Priyadarshi R., Ezati P., Rhim J.-W. // ACS Food Sci. Technol. 2021. V. 1. № 2.
- Abdallah E.M. // J. Acute Dis. 2016. V. 5. № 6. P. 512.
- Jabeur I., Pereira E., Barros L. et al. // Food Res. Int. 2017. V. 100. P. 717.
- Lin T.-L., Lin H.-H., Chen C.-C. et al. // Nutr. Res. 2007. V. 27. № 3. P. 140.
- Ali B.H., Cahliková L., Opletal L. et al. // J. Pharm. Pharmacol. 2017. V. 69. № 9. P. 1219.
- Mozaffari-Khosravi H., Jalali-Khanabadi B.-A., Afkhami-Ardekani M. et al. // J. Hum. Hypertens. 2009. V. 23. № 1. P. 48.
- Siracusa V., Rocculi P., Romani S. et al. // Trends Food Sci. Technol. 2008. V. 19. № 12. P. 634.
- Dickinson E. // Food Hydrocoll. Elsevier. 2009. V. 23. № 6. P. 1473.
- Saha D., Bhattacharya S. // J. Food Sci. Technol. 2010. V. 47. № 6. P. 587.
- Krempel M., Griffin K., Khouryieh H. Preservatives and Preservation Approaches in Beverages / Еd. Grumezescu A. M., Holban A. M. Academic Press, 2019. P. 427.
- Vries J. de // Conf. Gums and Stabilisers for the Food Industry – 12. 2004. P. 23.
- BeMiller J.N. // Gluten-Free Cereal Products and Beverages / Еd. Arendt E. K., Dal Bello F. San Diego: Academic Press, 2008. P. 203.
- Jiménez A., Requena R., Vargas M. et al. Role of Materials Science in Food Bioengineering. Elsevier, 2018. P. 266.
- Hanula M., Pogorzelska-Nowicka E., Pogorzelski G. et al. // Agriculture. Multidisciplinary Digital Publishing Institute. 2021. V. 11. № 7. P. 653.
- Gutiérrez T.J., León I. E., Ponce A. G. et al. // Polymers. Multidisciplinary Digital Publishing Institute. 2022. V. 14. № 22. P. 4881.
- Alizadeh Sani M., Tavassoli M., Salim S. A. et al. // Food Hydrocoll. 2022. V. 124. P. 107324.
- Wang Q., Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 1438.
- Kirchon A., Feng L., Drake H. F. et al. // Chem. Soc. Rev. 2018. V. 47. № 23. P. 8611.
- McKinlay A.C., Morris R. E., Horcajada P. et al. // Ang Chem Int Ed. 2010. V. 49. № 36. P. 6260.
- Li J.-R., Sculley J., Zhou H.-C. // Chem. Rev. 2012. V. 112. № 2. Р. 869.
- Dybtsev D.N., Nuzhdin A. L., Chun H. et al. // Angew. Chem. 2006. V. 118. № 6. P. 930.
- Horcajada P., Chalati T., Serre C. et al. // Nat. Mater. 2010. V. 9. P. 172.
- Wang H.-S. // Coord. Chem. Rev. 2017. V. 349. P. 139.
- Pak A.M., Zakharchenko E. N., Korlyukov A. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
- Kathalikkattil A.C., Roshan R., Tharun J. et al. // Chem. Commun. 2016. V. 52. № 2. P. 280.
- Cherrington R., Liang J. Materials and Deposition for Plastic Components for Multifunctionalty. Oxford: William Andrew Publishing, 2016. V. 13. № 6. P. 3340.
- Rhein-Knudsen N., Ale M. T., Meyer A. S. // Mar. Drugs. 2015. V. 13. № 6. P. 3340.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





