Coordination Compounds of Cobalt(II) Nitrate and Perchlorate with Acetamide and Carbamide: Precursors for the Synthesis of Catalytically Active Tricobalt Tetraoxide
- Autores: Rodriguez Pineda R.A.1, Karavaev I.A.1, Savinkina E.V.1, Volchkova E.V.1, Pastukhova Z.Y.1, Bruk L.G.1, Buzanov G.A.2, Kubasov A.S.2, Retivov V.M.3
- 
							Afiliações: 
							- MIREA Russian Technological University
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Kurchatov Institute
 
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 310-321
- Seção: Articles
- URL: https://rjeid.com/0132-344X/article/view/667598
- DOI: https://doi.org/10.31857/S0132344X24050039
- EDN: https://elibrary.ru/NKIPJK
- ID: 667598
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The reactions of cobalt(II) nitrate or perchloride with acetamide (AA) or carbamide (Ur) in an aqueous medium produce coordination compounds [Co(Ur)4](NO3)2 (I), [Co(Ur)6](NO3)2 (II), [Co(AA)4(H2O)2](NO3)2 (III), [Co(AA)4(H2O)2](NO3)2 ∙ 2AA (IV), [Co(Ur)6](ClO4)2, (V), [Co(AA)4(H2O)2](ClO4)2 (VI), and [Co(AA)6](ClO4)2 (VII). The compositions of the isolated complexes are determined by physicochemical methods, and the crystal and molecular structures of compounds II, V, VI, and VII are solved. Specific features of the thermal behavior of all synthesized compounds in a wide temperature range are studied in detail. These compounds are shown to be used as precursors in the preparation of nanosized Co3O4 using self-propagating high-temperature synthesis. The catalytic activity of thus synthesized Co3O4 in the model epoxidation of allyl alcohol is studied.
Texto integral
 
												
	                        Sobre autores
R. Rodriguez Pineda
MIREA Russian Technological University
							Autor responsável pela correspondência
							Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Karavaev
MIREA Russian Technological University
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Savinkina
MIREA Russian Technological University
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Volchkova
MIREA Russian Technological University
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Zh. Pastukhova
MIREA Russian Technological University
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
L. Bruk
MIREA Russian Technological University
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Retivov
Kurchatov Institute
														Email: rodrigues.pineda@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Vereshchagin, A.L. Preparativnyi samorasprostranyayushchiisya vysokotemperaturnyi sintez oksidov (Preparative Self-Propagating High-Temperature Synthesis of Oxides), Biisk, 2013.
- Merzhanov, A.G., Izv. Vysshikh. Uchebn. Zaved., 2006, no. 5, p. 5.
- Din, A., Akhtar, K., Karimov, Kh.S., et al., J. Mol. Liq., 2017, vol. 237, p. 266.
- Deng, J., Kang, L., Bai, G., et al., Electrochim. Acta, 2014, vol. 132, p. 127.
- Petrichko, M.I., Karavaev, I.A., Savinkina, E.V., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 4, p. 415. https://doi.org/10.1134/S0036023623600193
- Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., et al., Ceram. Int., 2013, vol. 39, no. 2, p. 1379.
- Savinkina, E.V., Karavaev, I.A., Grigoriev, M.S., et al., Inorg. Chim. Acta, 2022, vol. 532, p. 120759.
- Podbolotov, K.B., Volochko, A.T., and Khort, A.A., Perspektivnye materialy i tekhnologii (Prospective Materials and Technologies), Klubovich, V.V., Ed., Vitebsk: UO VGTU, 2017, vol. 2, p. 171.
- Wen, W., Wu, J.-M., and Tu, J.-P., J. Alloys Comp., 2012, vol. 513, p. 592.
- Jung, J.C.Y., Sui, P.C., and Zhang, J., J. Energy Storage, 2021, vol. 35, p. 102217.
- Hu, X., Wei, L., Chen, R., et al., ChemSelect, 2020, vol. 5, no. 17, p. 5268.
- Vojisavljevic, K., Wicker, S., Can, I., et al., Adv. Powder Technol., 2017, vol. 28, no. 4, p. 1118.
- Ma, J., Wei, H., Liu, Y., et al., Int. J. Hydrogen Energy, 2020, vol. 45, p. 21205.
- Toniolo, J.C., Takimi, A.S., and Bergmann, C.P., Mater. Res. Bull., 2010, vol. 45, no. 6, p. 672.
- Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.
- Luo, J. and Yathirajan, H.S., Ind. J. Mater. Sci., 2013, vol. 2014, p. 787306.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1971, vol. 204, no. 2, p. 342.
- Krawchuk, A. and Stadnicka, K., Acta Crystallogr., Sect. C: Cryst. Chem. Commun., 2007, vol. 63, p. 448.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 3, p. 600.
- Gentile, P.S., White, J., and Haddad, S., Inorg. Chim. Acta, 1974, vol. 8, p. 97.
- Gentile, P.S., Carfagno, P., Haddad, S., et al., Inorg. Chim. Acta, 1972, vol. 6, p. 296.
- McGillicuddy, R.D., Thapa, S., Wenny, M.B., et al., J. Am. Chem. Soc., 2020, vol. 142, no. 45, p. 19170.
- SAINT, Madison: Bruker AXS Inc., 2018.
- Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, no. 1, p. 3.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- Nakamoto, K., Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.
- Rosenthal, M.R., J. Chem. Educ., 1973, vol. 50, no. 5, p. 331.
- Nikishina, E.E., Tonkie Khim. Tekhnol., 2021, vol. 16, no. 6, p. 502.
- Shokri, A. and Fard, M.S., Environmental Challenges, 2022, vol. 7, p. 100534.
- Pastukhova, Zh.Yu., Levitin, V.V., Katsman, E.A., and Bruk, L.G., Kinet. Katal., 2021, vol. 62, no. 5, p. 551.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 












