Photoluminescent Lanthanide(III) Complexes Based on 2-[((4-Chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Five coordination compounds of the general formula [LnL2(NO3)3]n (Ln3+ = Eu (I), Sm (II), Tb(III), Dy (IV), and Gd (V)) are synthesized from 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethylcyclohexane-1,3-dione (L). The crystal structures of the ligand and complex III are determined by X-ray diffraction (XRD) of single crystals (CIF files CCDC nos. 2298715 (L) and 2298716 (III)). Complex III is polymeric due to the bidentate-bridging coordination of the ligand by the oxygen atoms of the cyclohexanedione fragment, and the coordination number of the central atom is ten. According to the phase XRD data, all synthesized polycrystalline compounds are isostructural to the single crystals of complex III. The photoluminescence properties of the ligand and coordination compounds in the polycrystalline state are studied. The energy transfer from the ligand to lanthanide(III) ion is shown to proceed via the “antenna” mechanism in the case of the europium(III), samarium(III), and terbium(III) compounds. Among the series of the complexes, the highest quantum yield is observed for compound I (21.9%), and the sensibilization efficiency of the europium(III) complex is 43.5%.

Texto integral

Acesso é fechado

Sobre autores

K. Smirnova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: lisalider@gmail.com
Rússia, Novosibirsk

E. Sanzhenakova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: lisalider@gmail.com
Rússia, Novosibirsk

I. Eltsov

Novosibirsk National Research State University

Email: lisalider@gmail.com
Rússia, Novosibirsk

I. Pozdnyakov

Voevodsky Institute of Chemical Kinetics and Consumption, Siberian Branch, Russian Academy of Sciences

Email: lisalider@gmail.com
Rússia, Novosibirsk

A. Russkikh

Kuban State University

Email: lisalider@gmail.com
Rússia, Krasnodar

V. Dotsenko

Kuban State University

Email: lisalider@gmail.com
Rússia, Krasnodar

E. Lider

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lisalider@gmail.com
Rússia, Novosibirsk

Bibliografia

  1. Bunzli, J.C.G., Chem. Rev., 2010, vol. 110, no. 5, p. 2729.
  2. Aspinall, H.C., Chem. Rev., 2002, vol. 102, no. 6, p. 1807.
  3. Hasegawa, Y., Kitagawa, Y., and Nakanishi, T., NPG Asia Mater., 2018, vol. 10, no. 4, p. 52.
  4. Bao, G., Wen, S., Lin, G., et al., Coord. Chem. Rev., 2021, vol. 429, p. 213642.
  5. Wei, C., Ma, L., Wei, H.B., et al., Sci. China Technol. Sci., 2018, vol. 61, no. 9, p. 1265.
  6. Armelao, L., and Quici, S., Coord. Chem. Rev., 2010, vol. 254, nos. 5–6, p. 48705.
  7. Bryleva, Y.A., Komarov, V.Y., Glinskaya, L.A., et al., New J. Chem., 2023, vol. 47, no. 21, p. 10446.
  8. Bryleva, Y.A., Artemʹev, A.V., Glinskaya, L.A., et al., J. Struct. Chem., 2021, vol. 62, no. 2, p. 265.
  9. Bryleva, Y.A., Artemʹev, A.V., Glinskaya, L.A., et al., Inorg. Chim. Acta, 2021, vol. 516.
  10. Artemʹev, A.V., Gusarova, N.K., Malysheva, S.F., et al., Mendeleev Commun., 2012, vol. 22, no. 6, p. 294.
  11. Crosby, G.A., Whan, R.E., and Freeman, J.J., J. Phys. Chem., 1962, vol. 6, no. 12, p. 2493.
  12. Rao, V.S. and Sauve, G., Comprehensive Organic Functional Group Transformations, 1995, vol. 2, p. 737.
  13. Chiara, J.L., Comprehensive Organic Functional Group Transformations II, 2005, p. 709.
  14. Lue, P., and Greenhill, J.V., Adv. Heterocycl. Chem., 1996, vol. 67, p. 207.
  15. Aly, A.A., and Hassan, A.A., Adv. Heterocycl. Chem., 2014, vol. 112, p. 145.
  16. Ebenezer, W.J. and Wight, P., ChemInform, 1996, p. 20576.
  17. Liu, T., Wan, J.P., and Liu, Y., Chem. Commun., 2021, vol. 57, no. 72, p. 9112.
  18. Yu, T., Ji, F., Huang, D., et al., Org. Chem. Front., 2021, vol. 8, no. 20, p. 5716.
  19. Wan, J.P., Cao, S., and Liu, Y., Org. Lett., 2016, vol. 18, no. 23, p. 6034.
  20. Stanovnik, B., Eur. J. Org. Chem., 2019, vol. 2019, no. 31–32, p. 5120.
  21. Gao, Y., Liu, Y., and Wan, J.P., Org. Chem., 2019, vol. 84, no. 4, p. 2243.
  22. Edafiogho, I.O. and Kombian, S.B., J. Pharm. Sci., 2007, vol. 96, no. 10, p. 2509.
  23. Bimoussa, A., Oubella, A., Hachim, M.E., et al., J. Mol. Struct., 2021, vol. 1241, 130622.
  24. Masaret, G.S., ChemistrySelect, 2021, vol. 6, no. 5, p. 974.
  25. Eddington, N.D., Cox, D.S., Khurana, M., et al., Eur. J. Med. Chem., 2003, vol. 38, no. 1, p. 49.
  26. Anderson, A.J., Nicholson, J.M., Bakare, O., et al., Bioorg. Med. Chem., 2006, vol. 14, no. 4, p. 997.
  27. Amaye, I.J., Harper, T.L., and Jackson-Ayotunde, P., J. Fluorine Chem., 2021, vol. 251, p. 109886.
  28. Li, H., Shu, H., Wang, X., et al., Org. Mater., 2020, vol. 02, no. 1, p. 033.
  29. Li, H., Shu, H., Liu, Y., et al., Adv. Opt. Mater., 2019, vol. 7, no. 8, p. 1801719.
  30. Smirnova, K.S., Ivanova, E.A., Sukhikh, T.S., et al., Inorg. Chim. Acta, 2021, vol. 525, p. 120490.
  31. Smirnova, K.S., Ivanova, E.A., Eltsov, I.V., et al., Polyhedron, 2022, vol. 227, p. 116122.
  32. Smirnova, K.S., Ivanova, E.A., Pozdnyakov, I.P., et al., Inorganica Chim. Acta, 2022, vol. 542, p. 121107.
  33. Jiang, H., Li, Y., Sun, M., et al., Arkivoc. Arkat., 2020, vol. 2020, no. 6, p. 1.
  34. Mohareb, R.M., Manhi, F.M., Mahmoud, M.A.A., et al., Med. Chem. Res., 2020, vol. 29, no. 8, p. 1536.
  35. Van Tinh, D., Fischer, M., and Stadlbauer, W., J. Heterocycl. Chem., 1996, vol. 33, no. 3, p. 905.
  36. Rather, M.A., Lone, A.M., Teli, B., et al., Medchemcomm, 2017, vol. 8, no. 11, p. 2133.
  37. Wang, J.M., Asami, T., Che, F.S., et al., J. Agric. Food Chem., 1997, vol. 45, no. 7, p. 2728.
  38. Wolfbeis, O.S. and Erich Ziegler, E.Z., Z. Naturforsch., A: Phys. Sci., 1976, vol. 31, no. 11, p. 1519.
  39. Zacharias, G., Wolfbeis, O.S., and Junek, H., Monatsh. Chem., 1974, vol. 105, no. 6, p. 1283.
  40. Fossa, P., Menozzi, G., Dorigo, P., et al., Bioorg. Med. Chem., 2003, vol. 11, no. 22, p. 4749.
  41. Frolov, K.A., Dotsenko, V.V., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 9, p. 1301.
  42. Komkov, A.V., Prezent, M.A., Ignatenko, A.V., et al., Russ. Chem. Bull., 2006, vol. 55, no. 11, p. 2085.
  43. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., et al., Russ. Chem. Bull., 2002, vol. 51, no. 8, p. 1556.
  44. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 48, no. 10, p. 1568.
  45. Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., et al., Chem. Heterocycl. Compd., 2013, vol. 49, no. 3, p. 440.
  46. Grannik, V.G., Shanazarov, A.K., Solovʹeva, N.P., et al., Chem. Heterocycl. Compd., 1987, vol. 23, no. 11, p. 1171.
  47. Qin, J.H. and Han, X.D., Z. Krist. New Cryst. Struct., 2012, vol. 227, no. 1, p. 7.
  48. Eremina, Y.A., Ermakova, E.A., Sukhikh, T.S., et al., J. Struct. Chem., 2021, vol. 62, no. 2, p. 309.
  49. Yang, L.W., Liu, S., Rettig, S.J., et al., Inorg. Chem., 1995, vol. 34, no. 19, p. 4921.
  50. CrysAlisPro 1.171.38.46, The Woodlands: Rigaku Oxford Diffraction, 2015.
  51. APEX2 (version 2.0), SAINT (version 8.18c) and SADABS (version 2.11), Madison: Bruker Advanced X-ray Solutions, 2000–2012.
  52. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.
  53. Sheldrick, G.M., Acta Crystallogr, Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
  54. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
  55. Werts, M.H.V., Jukes, R.T.F., and Verhoeven, J.W., Phys. Chem. Chem. Phys., 2002, vol. 4, no. 9, p. 1542.
  56. Werts, M.H.V., Luminescent Lanthanide Complexes: Visible Light Sensitised Red and Near-Infrared Luminescence, Univ. of Amsterdam, 2000.
  57. Andres, J. and Chauvin, A.-S., Encycl. Inorg. Bioinorg. Chem., 2012, p. 1.
  58. Klink, S.I., Hebbink, G.A., Grave, L., et al., J. Phys. Chem. A, 2002, vol. 106, no. 15, p. 3681.
  59. Bunzli, J.-C.G. and Eliseeva, S.V., Lanthanide Luminescence, Hanninen, P. and Harma, H. (Eds), 2010, vol. 7, p. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Possible routes for the synthesis of 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethyl-cyclohexane-1,3-dione

Baixar (178KB)
3. Scheme 2. Structural formula of 2-[((4-chlorophenyl)amino)methylene]-5,5-dimethyl-cyclohexane-1,3-dione (L) and correlation of the ligand bands from NMR spectroscopy data

Baixar (103KB)
4. Scheme 3. Scheme of synthesis of complexes I-V

Baixar (162KB)
5. Fig. 1. Calculated from single crystal structure (orange line) and experimental powder diffractograms of the complexes [LnL2(NO3)3]n

Baixar (391KB)
6. Fig. 2. Ligand structure and C(H)-C-N-C(H) torsion angle (φt) in L

Baixar (94KB)
7. Fig. 3. Coordination unit of the [TbL2(NO3)3]n (III) complex (a) and the polymer layered structure (b). Hydrogen atoms are not shown

Baixar (208KB)
8. Fig. 4. Overlay of crystal structures of the complexes [TbL2(NO3)3]n (III, purple colour) and [Tb(Lʹ)2(NO3)3]n (KBSD, turquoise colour)

Baixar (177KB)
9. Fig. 5. Diffuse reflectance (dashed lines), luminescence excitation and emission spectra for ligand and complexes I-II. Emission spectra were recorded at λvozb = 370 nm and luminescence excitation spectra at λisl = 460 nm for L, λisl = 613 nm for the europium(III) complex, λisl = 594 nm for the samarium(III) complex and λisl = 545 nm for the terbium(III) complex

Baixar (252KB)
10. Fig. 6. Kinetic luminescence curves of the ligand and complexes: the kinetic curve of L is indicated in red at λvozb = 375 nm and λisl = 470 nm, the biexponential approximation in blue with lifetimes of 0.6 ns (52%) and 1. 7 ns (48%), instrument response function in black (a); the kinetic curve of the europium(III) complex is in blue at λvozb = 370 nm and λisl = 615 nm, the approximation is in red with characteristic times of 1. 17 ms (b); the kinetic curve of the samarium(III) complex is in blue at λvozb = 370 nm and λisl = 595 nm, the approximation is in red with a characteristic time of 0.034 ms (c)

Baixar (295KB)
11. Fig. 7. Phosphorescence spectrum of complex V at 77 K and decomposition of the spectrum into Gaussian components

Baixar (243KB)
12. Fig. 8. CIE1931 colour space reflecting the emission colour of the ligand and complexes I and II

Baixar (138KB)

Declaração de direitos autorais © Российская академия наук, 2024