Peculiarities of the synthesis and structures of heterometallic carboxylate complexes with {Zn2Ln} and {Zn2Ca} metal cores
- Authors: Melnikov S.N.1, Rubtsova I.K.1, Nikolaevskii S.A.1, Eremenko I.L.1, Kiskin M.A.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 51, No 3 (2025)
- Pages: 145-164
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/683213
- DOI: https://doi.org/10.31857/S0132344X25030015
- EDN: https://elibrary.ru/LSNHGA
- ID: 683213
Cite item
Abstract
The results of investigation of the heterometallic trinuclear {Zn2Ln} and {Zn2Ca} carboxylate coordination compounds are systematized in the review. The methods of the synthesis, structural peculiarities, and some physicochemical properties are discussed.
Full Text
 
												
	                        About the authors
S. N. Melnikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                								Moscow						
I. K. Rubtsova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
S. A. Nikolaevskii
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: sanikol@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
I. L. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
M. A. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: sanikol@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Dossantos C., Harte A.J., Quinn S.J., Gunnlaugsson T. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2512.
- Yang X., Jones R.A., Huang S. // Coord. Chem. Rev. 2014. V. 273–274. P. 63.
- Yang X., Wang S., Wang C. et al. // Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials. Berlin Heidelberg: Springer, 2016. P. 155.
- Xu L.-J., Xu G.-T., Chen Z.-N. // Coord. Chem. Rev. 2014. V. 273–274. P. 47.
- Zhao N.-N., Zhang P., Jiang M. et al. // J. Mol. Struct. 2023. V. 1291. P. 136056.
- Bryleva Y.A., Rakhmanova M.I., Artem’ev A.V. et al. // New J. Chem. 2024. V. 48. P. 6430.
- Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056
- Zhong L.X., Liu M.Y., Zhang B.W. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 290. https://doi.org/10.1134/S1070328420040090
- Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98.
- Rossi P., Macedi E., Formica M. et al. // ChemPlusChem. 2020. V. 85. № 6. P. 1179.
- Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
- Koshelev D.S., Chikineva T.Yu., Kozhevnikova (Khudoleeva) V.Yu. et al. // Dyes Pigments. 2019. V. 170. P. 107604.
- Grebenyuk D., Zobel M., Polentarutti M. et al. // Inorg. Chem. 2021. V. 60. № 11. P. 8049.
- Grebenyuk D., Zobel M., Tsymbarenko D. // Polymers. 2022. V. 14. № 16. P. 3328.
- Grebenyuk D.I., Tsymbarenko D.M. // J. Struct. Chem. 2022. V. 63. № 3. P. 432.
- Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
- Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
- Xin Y., Wang J., Zychowicz M. et al. // J. Am. Chem. Soc. 2019. V. 141. № 45. P. 18211.
- Wang J., Zakrzewski J.J., Heczko M. et al. // J. Am. Chem. Soc. 2020. V. 142. № 8. P. 3970.
- Douib H., Gonzalez J.F., Speed S. et al. // Dalton Trans. 2022. V. 51. № 43. P. 16486.
- Zhang R., Wang L., Xu C. et al. // Dalton Trans. 2018. V. 47. № 21. P. 7159.
- Qiao N., Xin X.-Y., Guan X.-F. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 15098.
- Samulionis A.S., Melnikov S.N., Pavlov A.A. et al. // J. Struct. Chem. 2024. V. 65. № 1. P. 63.
- Nikolaevskii S.A., Yambulatov D.S., Starikova A.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 260. https://doi.org/10.1134/S1070328420040053
- Yambulatov D.S., Petrov P.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2020. V. 30. № 3. P. 293.
- Bondarenko M.A., Rakhmanova M.I., Plyusnin P.E. et al. // Polyhedron. 2021. V. 194. P. 114895.
- Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. № 11. P. 3393.
- Bondarenko M.A., Adonin S.A. // J. Struct. Chem. 2021. V. 62. № 8. P. 1251.
- Griffiths K., Kostakis G.E. // Dalton Trans. 2018. V. 47. № 35. P. 12011.
- Zhu T., Chen Y., Yang X. et al. // CrystEngComm. 2022. V. 24. № 37. P. 6527.
- Chen Y., Yang X., Cheng Y. et al. // Inorg. Chem. 2022. V. 61. № 2. P. 1011.
- Zhao J., Leng X., Lin J. et al. // Chem. Commun. 2023. V. 59. № 36. P. 5435.
- Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. № 18. P. 6595.
- Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
- Egorov E.N., Mikhalyova E.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 10. P. 2141.
- Cui Y., Qian Y.-T., Huang J.-S. // Polyhedron. 2001. V. 20. № 15–16. P. 1795.
- Cui Y., Zheng F., Qian Y., Huang J. // Inorg. Chim. Acta. 2001. V. 315. № 2. P. 220.
- Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 8050.
- Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. № 30. P. 13349.
- Wang Y.-M., Wang Y., Wang R.-X. et al. // J. Phys. Chem. Solids. 2017. V. 104. P. 221.
- Kiskin M.A., Varaksina E.A., Taydakov I.V., Eremenko I.L. // Inorg. Chim. Acta. 2018. V. 482. P. 85.
- Chi Y.-X., Niu S.-Y., Wang R. et al. // J. Lumin. 2011. V. 131. № 8. P. 1707.
- Wu B., Lu W., Zheng X. // J. Chem. Crystallogr. 2003. V. 33. № 3. P. 203.
- Wu B., Guo Y. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1356.
- Zhu Y., Lu W.-M., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 7. P. m963.
- Zhu Y., Lu W., Chen F. // Acta Crystallogr. E. 2004. V. 60. № 10. P. m1459.
- Zhu Y., Lu W.-M., Ma M., Chen F. // Acta Crystallogr. E. 2005. V. 61. № 8. P. m1610.
- Бюлер К., Пирсон Д. Органические синтезы. Ч. 2. М.: Мир, 1973.
- Vigato P.A., Peruzzo V., Tamburini S. // Coord. Chem. Rev. 2012. V. 256. № 11. P. 953.
- Alexeev Yu.E., Kharisov B.I., Hernández García T.C., Garnovskii A.D. // Coord. Chem. Rev. 2010. V. 254. № 7. P. 794.
- Andruh M. // Chem. Commun. 2011. V. 47. № 11. P. 3025.
- Andruh M. // Dalton Trans. 2015. V. 44. № 38. P. 16633.
- Yang X., Schipper D., Liao A. et al. // Polyhedron. 2013. V. 52. P. 165.
- Liao A., Yang X., Stanley J.M. et al. // J. Chem. Crystallogr. 2010. V. 40. № 12. P. 1060.
- Zou X., Fei B., Li G. // Polyhedron. 2020. V. 192. P. 114811.
- Zhang Y., Feng W., Liu H. et al. // Inorg. Chem. Commun. 2012. V. 24. P. 148.
- Tian Y.-M., Li H.-F., Han B.-L. et al. // Acta Crystallogr. E. 2012. V. 68. № 12. P. m1500.
- Maeda M., Hino S., Yamashita K. et al. // Dalton Trans. 2012. V. 41. № 44. P. 13640.
- Hino S., Maeda M., Kataoka Y. et al. // Chem. Lett. 2013. V. 42. № 10. P. 1276.
- Dong Y.-J., Ma J.-C., Zhu L.-C. et al. // J. Coord. Chem. 2017. V. 70. № 1. P. 103.
- Akine S., Taniguchi T., Nabeshima T. // Inorg. Chem. 2004. V. 43. № 20. P. 6142.
- Akine S., Taniguchi T., Nabeshima T. // Chem. Lett. 2006. V. 35. № 6. P. 604.
- Kori D., Dote Y., Koikawa M., Yamada Y. // Polyhedron. 2019. V. 170. P. 612.
- Liu X., Yang X., Ma Y. et al. // J. Lumin. 2021. V. 229. P. 117679.
- Niu M., Yang X., Ma Y. et al. // J. Phys. Chem. A. 2021. V. 125. № 1. P. 251.
- Miroslaw B., Cristóvão B., Hnatejko Z. // Molecules. 2018. V. 23. № 7. P. 1761.
- Miroslaw B., Cristóvão B., Hnatejko Z. // Polyhedron. 2019. V. 166. P. 83.
- Xu J., Xia X., Zhang G. et al. // Inorg. Chim. Acta. 2020. V. 512. P. 119918.
- Qu Y., Wang C., Wu Y. et al. // J. Lumin. 2020. V. 226. P. 117437.
- Zhang G., Xia X., Xu J. et al. // J. Mol. Struct. 2021. V. 1226. P. 129337.
- Yang X.-P., Jones R.A., Wong W.-K. et al. // Chem. Commun. 2006. № 17. P. 1836.
- Lü X., Bi W., Chai W. et al. // Polyhedron. 2009. V. 28. № 1. P. 27.
- Dong W.-K., Ma J.-C., Zhu L.-C. et al. // Cryst. Growth Des. 2016. V. 16. № 12. P. 6903.
- Xu J., Xia X., Xia L. et al. // J. Coord. Chem. 2021. V. 74. № 13. P. 2263.
- Li K., Shen Q., Kong X. et al. // J. Coord. Chem. 2023. V. 76. № 11–12. P. 1370.
- Fu G., He Y., Li B. et al. // J. Mater. Chem. C. 2018. V. 6. № 33. P. 8950.
- Shukla P., Ansari K.U., Gao C. et al. // Dalton Trans. 2020. V. 49. № 30. P. 10580.
- Li M., Wu H., Wei Q. et al. // Dalton Trans. 2018. V. 47. № 28. P. 9482.
- Upadhyay A., Das C., Vaidya S. et al. // Chem. Eur. J. 2017. V. 23. № 20. P. 4903.
- Zheng Z.-P., Ou Y.-J., Hong X.-J. et al. // Inorg. Chem. 2014. V. 53. № 18. P. 9625.
- Roy S., Du J., Manohar E.M. et al. // Cryst. Growth Des. 2023. V. 23. № 4. P. 2218.
- Akine S., Taniguchi T., Nabeshima T. // J. Am. Chem. Soc. 2006. V. 128. № 49. P. 15765
- Akine S., Taniguchi T., Nabeshima T. // Angew. Chem. Int. Ed. 2002. V. 41. № 24. P. 4670.
- Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2007. V. 46. № 23. P. 9525.
- Akine S., Kagiyama S., Nabeshima T. // Inorg. Chem. 2010. V. 49. № 5. P. 2141.
- Akine S., Tadokoro T., Nabeshima T. // Inorg. Chem. 2012. V. 51. № 21. P. 11478.
- Dong W.-K., Zheng S.-S., Zhang J.-T. et al. // Spectrochim. Acta. A. 2017. V. 184. P. 141.
- Fondo M., Corredoira-Vázquez J., García-Deibe A.M. et al. // Inorg. Chem. 2017. V. 56. № 10. P. 5646.
- Akine S., Morita Y., Utsuno F., Nabeshima T. // Inorg. Chem. 2009. V. 48. № 22. P. 10670.
- Clegg W., Little I.R., Straughan B.P. // Inorg. Chem. 1988. V. 27. № 11. P. 1916.
- Cui Y., Zhang X., Zheng F. et al. // Acta Crystallogr. C. 2000. V. 56. № 10. P. 1198.
- Necefoglu H., Clegg W., Scott A.J. // Acta Crystallogr. E. 2002. V. 58. № 3. P. m123.
- Escobedo-Martínez C., Concepción Lozada M., Gnecco D. et al. // J. Chem. Crystallogr. 2012. V. 42. № 8. P. 794.
- Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722.
- Ejarque D., Calvet T., Font-Bardia M., Pons J. // Inorganics. 2022. V. 10. № 8. P. 118.
- Pramanik A., Fronczek F.R., Venkatraman R., Hossain A. // Acta Crystallogr. E. 2013. V. 69. № 12. P. m643.
- Liu C., An X.-X., Cui Y.-F. et al. // Appl. Organomet. Chem. 2020. V. 34. № 1.
- Hao J., Li L.-L., Zhang J.-T. et al. // Polyhedron. 2017. V. 134. P. 1.
- Wang L., Li X.-Y., Zhao Q. et al. // RSC Adv. 2017. V. 7. № 77. P. 48730.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted













