The tetranuclear macrocyclic mercury(II) complex of [Hg4{S2CN(CH3)2}4Cl4]: preparation, molecular and supramolecular structures, and thermal behavior
- Authors: Loseva O.V.1, Rodina T.A.2, Smolentsev A.I.3, Zinchenko S.V.4, Ivanov A.V.1
- 
							Affiliations: 
							- Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
- Amur State University
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Issue: Vol 51, No 4 (2025)
- Pages: 242-254
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/679429
- DOI: https://doi.org/10.31857/S0132344X25040049
- EDN: https://elibrary.ru/LPFAQG
- ID: 679429
Cite item
Abstract
The tetranuclear mercury(II) dithiocarbamato-chlorido complex [Hg4(S2CNMe2)4Cl4] (I), the molecule of which includes a centrosymmetric 16-membered metallacycle [Hg4S8C4], was prepared by the reaction of solutions of HgCl2 and sodium dimethyldithiocarbamate (Me2Dtc). The crystal, molecular, and supramolecular structures of I were established by direct single crystal X-ray diffraction (CCDC no. 2364847). In complex I, the non-equivalent μ2-bridging dithiocarbamate ligands join neighboring mercury atoms in pairs, thus forming a tetranuclear macrocyclic molecule. The intramolecular Hg···S and Hg···Cl secondary bonds stabilize the spatial configuration of this macrometallacycle. The supramolecular self-organization of the complex is due to the relatively weak, pairwise S···Cl and Hg···Cl secondary interactions, which combine the tetranuclear molecules of I into 2D pseudo-polymer layers; numerous non-classical C–H···Cl and C–H···S hydrogen bonds connect these layers to form a 3D framework. According to simultaneous thermal analysis data, the thermal decomposition of I is accompanied by the formation of HgS and release of HgCl2.
Full Text
 
												
	                        About the authors
O. V. Loseva
Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                	Russian Federation, 							Blagoveshchensk, 675000						
T. A. Rodina
Amur State University
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                	Russian Federation, 							Blagoveshchensk, 675027						
A. I. Smolentsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090						
S. V. Zinchenko
Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                	Russian Federation, 							Irkutsk, 664033						
A. V. Ivanov
Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: alexander.v.ivanov@chemist.com
				                					                																			                												                	Russian Federation, 							Blagoveshchensk, 675000						
References
- Cho M., Shin H.J., Kusumahastuti D.K.A. et al. // Inorg. Chim. Acta. 2020. V. 511. Art. 119789. https://doi.org/10.1016/j.ica.2020.119789
- Amani V., Alizadeh R., Alavije H.S. et al. // J. Mol. Struct. 2017. V. 1142. P. 92. https://doi.org/10.1016/j.molstruc.2017.04.034
- Priola E., Bonomettia E., Brunella V. et al. // Polyhedron. 2016. V. 104. P. 25. https://doi.org/10.1016/j.poly.2015.10.059
- Fu Y., Sun Y., Zheng Y. et al. // Sep. Purif. Technol. 2021. V. 259. Art. 118112. https://doi.org/10.1016/j.seppur.2020.118112
- Samiee S., Bahmaie M., Motamedi H. et al. // Polyhedron. 2020. V. 184. Art. 114567. https://doi.org/10.1016/j.poly.2020.114567
- Sabounchei S.J., Shahriary P., Rudbari H.A., Chehregani A. // J. Inorg. Organomet. Polym. 2015. V. 25. № 5. P. 1032. https://doi.org/10.1007/s10904-015-0206-5
- Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1999. V. 214. № 9. P. 571. https://doi.org/10.1524/zkri.1999.214.9.571
- Jotani M.M., Tan Y.S., Tiekink E.R.T. // Z. Kristallogr. 2016. V. 231. P. 403. https://doi.org/10.1515/zkri-2016-1943
- Howie R.A., Tiekink E.R.T., Wardell J.L., Wardell S.M.S.V. // J. Chem. Crystallogr. 2009. V. 39. Р. 293. https://doi.org/10.1007/s10870-008-9473-0
- Gurumoorthy G., Thirumaran S.S., Ciattini S. // Polyhedron. 2016. V. 118. P. 143. https://doi.org/10.1016/j.poly.2016.08.001
- Singh A., Singh A., Singh S. et al. // CrystEngComm. 2021. V. 23. P. 2414. https://doi.org/10.1039/d0ce01867h
- Rajput G., Yadav M.K., Thakur T.S. et al. // Polyhedron. 2014. V. 69. Р. 225. https://doi.org/10.1016/j.poly.2013.12.005
- Shotonwa I.O., Osifeko O.L., Amos S.F. et al. // J. Mol. Struct. 2024. V. 1310. Art. 138242. https://doi.org/10.1016/j.molstruc.2024.138242
- Khan A., Hayat F., Butler I.S. et al. // Polyhedron. 2021. V. 193. Art. 114876. https://doi.org/10.1016/j.poly.2020.114876
- Altaf M., Stoeckli-Evans H., Batool S.S. et al. // J. Coord. Chem. 2010. V. 63. № 7. P. 1176. https://doi.org/10.1080/00958971003759085
- Ajibade P.A., Onwudiwe D.C., Moloto M.J. // Polyhedron. 2011. V. 30. № 2. P. 246. https://doi.org/10.1016/j.poly.2010.10.023
- Dar S.H., Thirumaran S., Selvanayagam S. // Polyhedron. 2015. V. 96. P. 16. https://doi.org/10.1016/j.poly.2015.04.020
- Oladipo S.D., Omondi B. // Transition Met. Chem. 2020. V. 45. № 6. P. 391. https://doi.org/10.1007/s11243-020-00391-y
- Лосева О.В., Родина Т.А., Иванов А.В. и др. // Изв. АН. Сер. хим. 2019. № 4. С. 782 (Loseva O.V., Rodina T.A., Ivanov A.V. et al. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 782). https://doi.org/10.1007/s11172-019-2486-3
- Book L., Chieh C. // Acta Crystallogr. B. 1980. V. 36. P. 300. https://doi.org/10.1107/s0567740880003135
- Angeloski A., Rawal A., Bhadbhade M. et al. // Cryst. Growth Des. 2019. V. 19. Р. 1125. https://doi.org/10.1021/acs.cgd.8b01619
- Loseva O.V., Rodina T.A., Shah F.U. et al. // Inorg. Chim. Acta. 2022. V. 533. Art. 120786. https://doi.org/10.1016/j.ica.2021.120786
- Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1997. V. 212. № 7. P. 542. https://doi.org/10.1524/zkri.1997.212.7.542
- Иванов А.В., Корнеева Е.В., Буквецкий Б.В. и др. // Коорд. xимия. 2008. Т. 34. № 1. С. 61 (Ivanov A.V., Korneeva E.V., Bukvetskii B.V. et al. // Russ. J. Coord. Chem. 2008. V. 34. № 1. P. 34). https://doi.org/
- Hexem J.G., Frey M.H., Opella S.J. // J. Chem. Phys. 1982. V. 77. № 8. P. 3847. https://doi.org/10.1063/1.444338
- Harris R.K., Jonsen P., Packer K.J. // Magn. Reson. Chem. 1985. V. 23. № 7. P. 565. https://doi.org/10.1002/mrc.1260230716
- APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Pines A., Gibby M.G., Waugh J.S. // J. Chem. Phys. 1972. V. 56. № 4. P. 1776. https://doi.org/10.1063/1.1677439
- Earl W.L., VanderHart D.L. // J. Magn. Reson. 1982. V. 48. № 1. P. 35. https://doi.org/10.1016/0022-2364(82)90236-0
- Morcombe C.R., Zilm K.W. // J. Magn. Reson. 2003. V. 162. № 2. P. 479. https://doi.org/10.1016/S1090-7807(03)00082-X
- Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностранной литературы, 1963. 590 с.
- Fabretti A.C., Forghieri F., Giusti A. et al. // Spectrochim. Acta. A. 1984. V. 40. Р. 343. https://doi.org/10.1016/0584-8539(84)80059-8
- Yin H., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Thomas I.D., Kocher K.R., Viehweg J.A. et al. // Acta Crystallogr. E. 2023. V. 79. № 10. Р. 952. https://doi.org/10.1107/S205698902300823X
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- Prasad R., Yadav R., Trivedi M. et al. // J. Mol. Struct. 2016. V. 1103. P. 265. http://dx.doi.org/10.1016/j.molstruc.2015.10.001
- Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. V. 9. P. 955. https://doi.org/10.1039/b617136b
- Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. V. 7. P. 1349. https://doi.org/10.1039/DT9840001349
- Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132. https://doi.org/10.1021/jp904128b
- Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. N 5. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
- Бахтиярова Ю.В., Аксунова А.Ф., Галкина И.В. и др. // Изв. АН. Сер. хим. 2016. № 5. С. 1313.
- Лосева О.В., Родина Т.А., Герасименко А.В., Иванов А.В. // Коорд. химия. 2023. Т. 49. № 1. С. 13 (Loseva O.V., Rodina T.A., Gerasimenko A.V., Ivanov A.V. // Russ. J. Coord. Chem. 2023. V. 49. № 1. P. 10). https://doi.org/10.1134/S1070328422700233
- Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987. 319 с.
- Loseva O.V., Rodina T.A., Smolentsev A.I., Ivanov A.V. // Polyhedron. 2017. V. 134. P. 238. https://doi.org/10.1016/j.poly.2017.06.021
- Leckey J.H., Nulf L.E. Thermal decomposition of mercuric sulfide, Y/DZ-1124 (1994): Oak Ridge Y-12 Plant (TN, USА). https://doi.org/10.2172/41313
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





