Palladium Complexes of Pyrimidine-2-thiones: Synthesis, Structures, and Properties
- Authors: Kuzovlev A.S.1,2, Gordeeva N.A.3, Pastukhova Z.Y.3, Chernyshev V.V.1,4, Buzanov G.A.5, Dunaev S.F.1, Bruk L.G.3
- 
							Affiliations: 
							- Moscow State University
- Tyumen State University
- Russian Technological University (MIREA)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 50, No 1 (2024)
- Pages: 53-61
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/667628
- DOI: https://doi.org/10.31857/S0132344X24010063
- EDN: https://elibrary.ru/OSLSPO
- ID: 667628
Cite item
Abstract
Complexes [PdL2Cl2] (I) and [PdL2Вr2] (II) (L is 5-acetyl-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyrimidine-2-thione) are synthesized and characterized by spectral methods (1Н, 13С NMR and IR spectroscopy). The crystal structure of complex I is determined (CIF file ССDС no. 2233053) in which the palladium atom is coordinated by two halide ions and two sulfur atoms of two ligands L in a distorted square planar geometry. The catalytic activity of the synthesized palladium(II) complexes in the model epoxidation of allyl alcohol is estimated in comparison with the catalytic activity of the corresponding palladium halides and titanium-containing zeolite TS-1.
Keywords
Full Text
 
												
	                        About the authors
A. S. Kuzovlev
Moscow State University; Tyumen State University
							Author for correspondence.
							Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow; Tyumen						
N. A. Gordeeva
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
Zh. Yu. Pastukhova
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. V. Chernyshev
Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
G. A. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
S. F. Dunaev
Moscow State University
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
L. G. Bruk
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Kokina T.E., Glinskaya L. A., Sheludyakova L. A. et al. // Polyhedron. 2019. V. 163. P. 121.
- Moro A.C., Mauro A. E., Netto A. V.G. et al. // Eur. J. Med. Chem. 2009. V. 44. № 11. P. 4611.
- Nadeem S., Bolte M., Ahmad S. et al. // Inorg. Chim. Acta. 2010. V. 363. № 13. P. 3261.
- Rohini G., Ramaiah K., Aneesrahman K. N. et al. // Appl. Organomet. Chem. 2018. V. 32. № 12. P. 4567.
- Da Silva D. L., Reis F. S., Muniz D. R. et al. // Bioorg. Med. Chem. 2012. V. 20. № 8. P. 2645.
- Sashidhara K.V., Avula S. R., Sharma K. et al. // Eur. J. Med. Chem. 2013. V. 60. P. 120.
- Kuzovlev A.S., Volkova D. A., Parfenova I. V. et al. // New J. Chem. 2020. V. 44. P. 7865.
- Kappe C.O. // Eur. J. Med. Chem. 2000. V. 35. P. 1043.
- Sati B. E., Sati H., Nargund L. V.G et al. // Orient. J. Chem. 2012. V. 28. № 2. P. 1055.
- Chikhale R., Thorat S., Pant A. et al. // Bioorg. Med. Chem. 2015. V. 23. № 20. P. 6689.
- Sawant R.L., Sarode V. I., Jadha G. D. et al. // Med. Chem. Res. 2011. V. 21. № 8. P. 1825.
- Kwon O.W., Moon E., Chari M. A. et al. // Bioorg. Med. Chem. Lett. 2012. V. 22. № 16. Р. 5199.
- Shkurko O.P., Tolstikova T. G., Sedova V. F. // Rus. Chem. Rev. 2016. V. 85. № 10. P. 1056.
- Lauro G., Strocchia M., Terracciano S. et al. // Eur. J. Med. Chem. 2014. V. 80. P. 407.
- Crespo A., El Maatougui A., Biagini P. et al. // ACS Med. Chem. Lett. 2013. V. 4. № 11. P. 1031.
- Cepeda V., Fuertes M., Castilla J. et al. // Anti-Cancer Agents Med. Chem. 2007. V. 7. № 1. P. 3.
- Alderden R.A., Hall M. D., Hambley T. W. // J. Chem. Ed. 2006. V. 83. № 5. P. 728.
- Kartalou, M. Essigmann, J.M. // Mut. Res. 2001. V. 478. № 1–2. Р. 23.
- De Moura T. R., Cavalcanti S. L., Sakamoto-Hojo E.T. et al. // Transition Met. Chem. 2017. V. 42. № 6. P. 565.
- Dorairaj D.P., Haribabu J., Hsu S. C.N. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 109018.
- Dorairaj D.P., Haribabu J., Chithravel V. et al. // Res. Chem. 2021. V. 3. P. 100157.
- Bharati P., Bharti A., Nath P. et al. // Inorg. Chim. Acta. 2016. V. 443. P. 160.
- Pearson R.G. // Phys. Inorg. Chem. 1963. V.85. № 22. P. 3533.
- Ruan J., Xiao J. // Acc. Chem. Res. 2011. V. 44. № 8. Р. 614.
- Sherwood J., Clark J. H., Fairlamb I. J.S. et al. // Green Chem. 2019. V. 21. P. 2164.
- Gadge S.T., Bhanage B. M. // RSC Adv. 2014. V. 4. P. 10367.
- Wang D., Weinstein A. B., White P. B. et al. // Chem. Rev. 2018. V. 118. № 5. P. 2636.
- Engle K.M., Yu J-Q. // J. Org. Chem. 2013. V. 78. P. 8927.
- Zhang L-M., Li H-Y., Li H-X. et al. // Inorg. Chem. 2017. V. 56. P. 11230.
- Jia W-G., Gao L-L, Wang Z-B. et al. // RSC Adv. 2017. V. 7. P. 42792.
- Chernyshev V.V. // Russ. Chem. Bull. Int. Ed. 2001. V. 50. P. 2273.
- Cerny R. // Crystals. 2017. V. 7. P. 142.
- Hughes C.E., Reddy G. N.M., Masiero S. et al. // Chem. Sci. 2017. V. 8. P. 3971.
- Pawley G.S. // J. Appl. Crystallogr. 1981. V. 14. P. 357.
- Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
- Zhukov S.G., Chernyshev V. V., Babaev E. V. et al. // Z. Kristallogr. 2001. V. 216. P. 5.
- Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
- Andreev S.V., Zverev S. A., Zamilatskov I. A. et al. // Acta Crystallorg. C. 2017. V. 73. P. 47.
- Erzina D.R., Zamilatskov I.A, Stanetskaya N. M. et al. // Eur. J. Org. Chem. 2019. P. 1508.
- Spek A.L. // Acta Crystallorg. D. 2009. V. 65. P. 148.
- Pastukhova Zh. Yu., Levitin V. V., Katsman E. A. et al. // Kinet. Catal. 2021. V. 62. № 5. P. 551.
- Groom C.R., Allen F. H. // Angew. Chem. 2014. V. 53. P. 662.
- Bordiga S., Bonina F., Damin A. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. № 35. P. 4854.
- Taramasso M., Perego G., Notari B. US Pat. № 4410501. 1983.
- Flaningen E.M., Bennett J. M., Grose R. W. et al. // Nature. 1978. V. 271. P. 512.
- Lane B.S., Burgess K. // Chem. Rev. 2003. V. 103. P. 2457.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




