Квантово-химическое изучение энергии связывания эндофуллерена иона лития li+@C60 с анионами
- Авторы: Михайлов Г.П1
- 
							Учреждения: 
							- Уфимский университет науки и технологий
 
- Выпуск: Том 93, № 6 (2023)
- Страницы: 978-984
- Раздел: Статьи
- URL: https://rjeid.com/0044-460X/article/view/666981
- DOI: https://doi.org/10.31857/S0044460X23060173
- EDN: https://elibrary.ru/FNPOIT
- ID: 666981
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Методом теории функционала плотности выполнен расчет оптимальной геометрии, энергии связывания (Δ E ) ионных пар типа Li+@C60·A- (A = BF4, AsF6, PF6, FSI, TFSI, 4F-BB) в вакууме и среде хлорбензола. Установлено, что значения Δ E значительно уменьшаются в среде хлорбензола в зависимости от природы аниона. В структурах Li+@C60·A-установлены разнообразные контакты C···F, C···O, C···C, C···N и Li···C, которые в рамках теории Бейдера «атомы в молекулах» отнесены к взаимодействиям типа закрытых оболочек, и рассчитаны их энергии.
			                Список литературы
- Ярмоленко О.B., Юдина А.В., Игнатов А.А. // Электрохимическая энергетика. 2016. Т. 16. № 4. С. 155. doi: 10.18500/1608-4039-2016-16-4-155-195
- Aoyagi S., Nishibori E., Hiroshi Sawa H., Kunihisa Sugimoto K., Takata M., Miyata Y., Kitaura R., Shinohara H., Okada H., Sakai T, Ono Y., Kawachi K., Yokoo K., Ono S., Omote K., Kasama Y., Ishikawa S., Komuro T., Tobita H. // Nature Chemistry. 2010. Vol. 2(8). P.678. doi: 10.1038/nchem.698
- Aoyagi S., Sado Y., Nishibori E., Sawa H., Okada H., Tobita H., Kasama Y., Kitaura R., Shinohara H. // Angew. Chem. Int. Ed. 2012. Vol. 51. P. 3377. doi: 10.1002/anie.201108551
- Ueno H., Kokubo K., Nakamura Y., Ohkubo K., Ikuma N., Moriyama H., Fukuzumibd S., Oshima T. // Chem. Commun. 2013. Vol. 49. P. 7376. doi: 10.1039/c3cc43901a
- Kalhoff J., Bresser D., Bolloli M., Alloin F., Sanchez J.-Y., and Passerini S. // ChemSusChem.2014. N 7(10). P. 2939. doi: 10.1002/cssc.201402502
- Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K. // Science. 2015. Vol. 350. N 6263. P. 938. doi: 10.1126/science.aab1595
- Jónsson E., Johansson P. // Phys. Chem. Chem. Phys. 2012. Vol. 14. P.10774. doi: 10.1039/C2CP40612H
- Liu Z., Chai J., Xu G., Wang Q., Cui G. // Coord. Chem. Rev. 2015. Vol. 292. P. 56. doi: 10.1016/j.ccr.2015.02.011
- Михайлов Г.П. // ЖОХ. 2018. Т. 88. Вып. 11. С. 1858
- Mikhailov G.P. // Russ. J. Gen. Chem. 2018. Vol. 88. N 11. P. 2335. doi: 10.1134/S0044460X18110148
- Bader R.F.W. Atoms in Molecules. A Quantum Theory. Oxford: Clarendon Press, 1990. 458 p.
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. Vol. 285. N 3-4. P. 170. doi: 10.1016/S0009-2614 (98)00036-0
- Cremer D., Kraka E. // Croat. Chem. Acta. 1984. Vol. 57. P.1259.
- Antoine R., Rayane D., Benichou E., Dugourd Ph., Broyer M. // Eur. Phys. J. D. 2000. Vol. 12. P. 147. doi: 10.1007/s100530070051
- Oliveira O.V., Gonçalves A.S. // Comput. Chem. 2014. Vol. 2. P. 51. doi: 10.4236/cc.2014.2400
- Bai H., Gao H., Feng W., Zhao Y., Wu Y. // Nanomaterials. 2019. Vol. 9. N 4. P. 630. doi: 10.3390/nano 9040630
- Шишкина С.В., Зубатюк Р.И., Кучеренко Л.И., Парнюк Н.В., Мазур И.А., Георгиевский Г.В., Шишкин О.В. // Изв. АН. Сер. хим. 2013. Т. 62. № 8. С. 1900
- Shishkin S.V., Zubatyuk R.I., Shishkina O.V., Kucherenko L.I., Parnyuk N.V., Mazur I.A., Georgievskii G.V. // Russ. Chem. Bull. 2013. Vol. 62. N 8. P. 1900. doi: 10.1007/s11172-013-0273-0
- Maiyelvaganan K.R., Prakash M., Ravva M.K. // Comput. Theor. Chem. 2022. Vol. 1209. P. 113601. doi: 10.1016/j.comptc.2022.113601
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T.
- Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. GAUSSIAN 09, Revision A.1. Gaussian, Inc., Wallingford, CT, 2009.
- Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. (B). 2009. Vol. 113. P. 6378. doi: 10.1021/jp810292
- Zhurko Z.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
- Keith T.A. AIMAll (Version. 10.05.04), http://aim.tkgristmill.com
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

