Sulfur solubility in sulfolane electrolytes for lithium-sulfur batteries
- Autores: Karaseva E.V1, Khramtsova L.A1, Shakirova N.V1, Kuzmina E.V1, Kolosnitsyn V.S1
- 
							Afiliações: 
							- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
 
- Edição: Volume 93, Nº 5 (2023)
- Páginas: 813-820
- Seção: Articles
- URL: https://rjeid.com/0044-460X/article/view/667020
- DOI: https://doi.org/10.31857/S0044460X23050165
- EDN: https://elibrary.ru/DDFIAO
- ID: 667020
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The solubility of sulfur in sulfolane and sulfolane solutions of lithium salts [LiBF4, LiClO4, LiPF6, LiSO3CF3 and LiN(SO2CF3)2], promising electrolytes for lithium-sulfur batteries, was determined by UV-vis spectroscopy. It was found that the solubility of sulfur in sulfolane at 30°C is 82.0 mM, and in sulfolane solutions of lithium salts (1 M) is 4-9 times lower than in pure sulfolane. The dependence of sulfur solubility on the concentration of lithium salts is not linear, it is 32.9 and 5.8 mM for sulfolane solutions of 0.5 М LiClO4 and 2.35 M LiClO4, respectively.
			                Palavras-chave
Sobre autores
E. Karaseva
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
														Email: karaseva@anrb.ru
				                					                																			                												                														
L. Khramtsova
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
N. Shakirova
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
E. Kuzmina
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
V. Kolosnitsyn
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences
Bibliografia
- Zhang S.S. // J. Power Sources. 2013. Vol. 231. P. 153. doi: 10.1016/j.jpowsour.2012.12.102
- Zu C.-X., Li H. // Energy Environ. Sci. 2011. Vol. 4. P. 2614. doi: 10.1039/c0ee00777c
- Sciamanna S.F., Lynn S. // Ind. Eng. Chem. Res. 1988. Vol. 27. N 3. P. 485.
- Zheng D., Zhang X., Li C., McKinnon M.E., Sadok R.G., Qu D., Yu X., Lee H.-S., Yang X.-Q., Qu D. // J. Electrochem. Soc. 2015. Vol. 162. N 1. P. A203. doi: 10.1149/2.1011501jes
- Harks P.P.R.M.L., Robledo C.B., Verhallen T.W., Notten P.H.L., Mulder F.M. // Adv. Energy Mater. 2016. Article no. 1601635. doi: 10.1002/aenm.201601635
- Park J.W., Yamauchi K., Takashima E., Tachikawa N., Ueno K., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. N 9. P. 4431. doi: 10.1021/jp400153m
- Ueno K., Park J.-W., Yamazaki A., Mandai T., Tachikawa N., Dokko K., Watanabe M. // J. Phys. Chem. C. 2013. Vol. 117. P. 20509. dx.doi.org/10.1021/jp407158y
- Vaughn J.W., Hawkins C.F. // J. Chem. Eng. Data. 1964. Vol. 9. P. 140. doi: 10.1021/je60020a047
- Burwell R.L., Langford C.H. // J. Am. Chem. Soc. 1959. Vol. 81. P. 3799. doi: 10.1021/ja01523a079
- Xu K., Angell C.A. // Electrochem. Soc. 2002. Vol. 149. N 7. P. A920. doi: 10.1149/1.1483866
- Колосницын В.С., Шеина Л.В., Мочалов С.Э. // Электрохимия. 2008. Т. 44. Вып. 5. С. 620
- Kolosnitsyn V.S., Sheina L.V., Mochalov S.E. // Russ. J. Electrochem. 2008. Vol. 44. N 5. P. 575. doi: 10.1134/S102319350805011X
- Kolosnitsyn V.S., Kuzmina E.V., Karaseva E.V. // ECS Transaction. 2009. Vol. 19. P. 25. doi: 10.1149/1.3247062
- Karaseva E.V., Khramtsova L.A., Lobov A.N., Kuzmina E.V., Eroglu D., Kolosnitsyn V.S. // J. Power Sources. 2022. Vol. 548. Article no. 231980. doi: 10.1016/j.jpowsour.2022.231980
- Nakanishi A., Ueno K., Watanabe D., Ugata Y., Matsumae Y., Liu J., Thomas M.L., Dokko K., Watanabe M. // J. Phys. Chem. (C). 2019. Vol. 123. N 23. P. 14229. doi: 10.1021/acs.jpcc.9b02625
- Wang, Y., Xing, L., Li, W., Bedrov, D. // J. Phys. Chem. Lett. 2013. Vol. 4. P. 3992. doi: 10.1021/jz401726p
- Jow T.R., Xu K., Borodin O., Ue M. Electrolytes for lithium and lithium-ion batteries. Modern aspects of electrochemistry. Springer Science+Business Media, 2014. Vol. 58. P. 476. doi: 10.1007/978-1-4939-0302-3
- Yoon S., Lee Y.-H., Shin K.-H., Cho S.B., Chung W.J. // Electrochim. Acta. 2014. Vol. 145. P. 170. doi: 10.1016/j.electacta.2014.09.007
- Linert W., Jameson R.F., Taha A. // J. Chem. Soc. Dalton Trans. 1993. Vol. 21. P. 3181. doi: 10.1039/DT9930003181
- Linert W., Camard A., Armand M., Michot C. // Coord. Chem. Rev. 2002. Vol. 226. P. 137. doi: 10.1016/S0010-8545(01)00416-7
- Naejus R., Coudert R., Willmann P., Lemordant D. // Electrochim. Acta. 1998. Vol. 43. N 3-4. P. 275. doi: 10.1016/s0013-4686(97)00073-x
- Salomon M. // J. Solution Chem. 1993. Vol. 22. N 8. P. 715. doi: 10.1007/bf00647411
- Han H.-B., Zhou S.-S., Zhang D.-J., Feng S.-W., Li L.-F., Liu K., Feng W.-F., Nie J., Li H., Huang X.-J., Armand M., Zhou Z.-B // J. Power Sources. 2011. Vol. 196. P. 3623. doi: 10.1016/j.jpowsour.2010.12.040
- Košir U., Cigi I.K., Markelj J., Talian S.D., Dominko R. // Electrochim. Acta. 2020. Vol. 363. Article 137227. doi: 10.1016/j.electacta.2020.137227
- Cañas N.A. PhD Dissert. (Dr.-Ing.). Stuttgart, 2015. 189 p.
- Steudel R., Jensen D., Gobel P., Hugo P. // Ber. Buns. physik. Chem. 1988. Vol. 92. N 2 P. 118. doi: 10.1002/bbpc.198800031
- Heatley X.G., Page E.J. // Analyt. Chem. 1952. Vol. 24. N 11. P. 1854. doi: 10.1021/AC60071A047
- Karaseva E.V., Kuzmina E.V., Kolosnitsyn D.V., Shakirova N.V., Sheina L.V., Kolosnitsyn V.S. // Electrochim. Acta. 2019. Vol. 296. P. 1102. doi: 10.1016/j.electacta.2018.11.019
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
