Соли висмута(III) с малоновой кислотой: синтез, структура и свойства
- Авторы: Тимакова Е.В.1,2, Рыбалова Т.В.3, Мирзаева И.В.4, Дребущак Т.Н.1
- 
							Учреждения: 
							- Институт химии твердого тела и механохимии CО РАН
- Новосибирский государственный технический университет
- Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
- Институт неорганической химии им. А.В. Николаева СО РАН
 
- Выпуск: Том 70, № 6 (2025)
- Страницы: 753-764
- Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/686358
- DOI: https://doi.org/10.31857/S0044457X25060036
- EDN: https://elibrary.ru/IBEWPX
- ID: 686358
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Исследован процесс осаждения висмута(III) из хлорнокислых растворов при добавлении к ним малоновой кислоты в зависимости от молярного отношения малонат-ионов к висмуту в системе. Синтезирован основной малонат висмута BiОН(C3H2O4) (соединение I) и одинаковые по составу, но разные по структуре малонаты висмута, содержащие молекулу воды: Bi(C3H2O4)(C3H3O4)H2O (II) и [Bi(C3H2O4)(C3H3O4)] ∙ H2O (III). Основной малонат висмута получен в рентгеноаморфном виде, для двух других соединений методом рентгеноструктурного анализа определены кристаллические структуры. В соединении II молекула воды координирует висмут и является лигандом, а в соединении III – нет. Оба соединения являются одномерными (1D) координационными полимерами. После прокаливания соединений II и III при 120°С в результате дегидратации образуется безводный малонат висмута состава Bi(C3H2O4)(C3H3O4) (IV). Соединения I–IV охарактеризованы методами ИК-спектроскопии, термического анализа, порошковой дифрактометрии, их состав подтвержден методом элементного анализа. Рассмотрены особенности строения полимеров II и III, проведен топологический анализ электронной плотности контактов Bi–O, выделены основные и вторичные связи в координационных полиэдрах.
Полный текст
 
												
	                        Об авторах
Е. В. Тимакова
Институт химии твердого тела и механохимии CО РАН; Новосибирский государственный технический университет
							Автор, ответственный за переписку.
							Email: timakova@solid.nsc.ru
				                					                																			                												                	Россия, 							ул. Кутателадзе, 18, Новосибирск, 630090; пр-т К. Маркса, 20, Новосибирск, 630073						
Т. В. Рыбалова
Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
														Email: timakova@solid.nsc.ru
				                					                																			                												                	Россия, 							пр-т Академика Лаврентьева, 9, Новосибирск, 630090						
И. В. Мирзаева
Институт неорганической химии им. А.В. Николаева СО РАН
														Email: timakova@solid.nsc.ru
				                					                																			                												                	Россия, 							пр-т Академика Лаврентьева, 3, Новосибирск, 630090						
Т. Н. Дребущак
Институт химии твердого тела и механохимии CО РАН
														Email: timakova@solid.nsc.ru
				                					                																			                												                	Россия, 							ул. Кутателадзе, 18, Новосибирск, 630090						
Список литературы
- Keogan D., Griffith D. // Molecules. 2014. V. 19. P. 15258. https://doi.org/10.3390/molecules190915258
- Wang R., Li H., Ip T.K.-Y. et al. // Adv. Inorg. Chem. 2020. V. 75. P. 183. https://doi.org/10.1016/bs.adioch.2019.10.011
- Briand G.G., Burford N. // Chem. Rev. 1999. V. 99. P. 2601. https://doi.org/1021/cr980425s
- Zhou J.J., Shi X., Zheng S.P. et al. // Helicobacter. 2020. V. 25. P. 12755. https://doi.org/10.1111/hel.12755
- Тимакова Е.В., Бунькова Е.И., Афонина Л.И. и др. // Журн. прикл. химии. 2021. Т. 94. № 7. С. 857. https://doi.org/10.31857/S0044461821070069
- Усольцев А.Н., Шенцева И.А., Шаяпов В.Р. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1765. https://doi.org/10.31857/S0044457X2260102X
- Barszcz B., Masternak J., Kowalik M. // Coord. Chem. Rev. 2021. V. 443. 213935. https://doi.org/10.1016/j.ccr.2021.213935
- Ng S.W. // Acta Crystallogr., Sect. C: Struct. Chem. 2021. V. 77. P. 740. https://doi.org/10.1107/s2053229621011888
- Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б. и др. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1106. Serezhkin V.N., Artem'eva M.Yu., Serezhkina L.B. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1019.
- Сережкин В.Н., Медведков Я.А., Сережкина Л.Б. и др. // Журн. физ. химии. 2015. Т. 89. № 6. С. 978. https://doi.org/10.7868/S0044453715060254
- Сережкин В.Н., Рогалева Е.Ф., Шилова М.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 8. С. 1289. https://doi.org/10.7868/S0044453718080149
- Timakova E.V., Afonina L.I., Drebushchak T.N. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2023. V. 79. P. 409. https://doi.org/10.1107/s2053229623008124
- Kolitsch U. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003. V. 59. P. m501. https://doi.org/10.1107/s0108270103023618
- Tortet L., Monnereau O., Roussel P. et al. // J. Phys. IV (Proc.). 2004. V. 118. P. 43. https://doi.org/10.1051/jp4:2004118005
- Rivenet M., Roussel P., Abraham F. // J. Solid State Chem. 2008. V. 181. P. 2586. https://doi.org/10.1016/j.jssc.2008.06.031
- Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
- Shetu S.A., Sanchez-Palestino L.M., Rivera G. et al. // Tetrahedron. 2022. V. 129. P. 133117. https://doi.org/10.1016/j.tet.2022.133117
- Kim Y.-S. // BMB Rep. 2002. V. 35. P. 443. https://doi.org/10.5483/BMBRep.2002.35.5.443
- Власов Б.Я., Карелина Л.Н. // Бюл. ВСНЦ СО РАМН. 2011. № 1. С. 216.
- Небольсин В.Е. Пат. РФ № 2685277 C1 // Бюл. изобр. 2019. № 11.
- Sundvall B. // Acta Chem. Scand. 1980. V. 34A. P. 93. https://doi.org/10.3891/acta.chem.scand.34a-0093
- Sheldrick G.M. // SADABS Progr. scaling Correct. Area Detect. data 1996. https://www.scienceopen.com/document?vid=5cab3651-c60c-4e6d-89cc-c55396e9e2dc
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Crystallogr. 2020. V. 53. P. 226. https://doi.org/10.1107/S1600576719014092
- Weil M., Missen O.P., Mills S.J. // Acta Crystallogr., Sect. E: Crystallogr. Comm. 2023. V. 79. № 12. P. 1223. https://doi.org/10.1107/S205698902301023X
- BAND: SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com.
- Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. P. 1142. https://doi.org/10.1002/jcc.10255
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
- Van Lenthe E., Van Leeuwen R., Baerends E.J. et al. // Int. J. Quantum Chem. 1996. V. 57. P. 281. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
- Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
- Savin A., Jepsen O., Flad J. et al. // Angew. Chem. Int. Ed. 1992. V. 31. № 2. P. 187. https://doi.org/10.1002/anie.199201871
- Kowalik M., Masternak J., Brzeski J. et al. // Polyhedron. 2022. V. 219. 115818. https://doi.org/10.1016/j.poly.2022.115818
- Hartshorn R.M., Hey-Hawkins E., Kalio R. et al. // Pure Appl. Chem. 2007. V. 79. № 10. P. 1779. https://doi.org/10.1351/pac200779101779
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. Is. 3-4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
- Macoas E.M.S., Fausto R., Lundell J. et al. // J. Phys. Chem. A. 2000. V. 104. P. 11725. https://doi.org/10.1021/jp002853j
- Tarakeshwar P., Manogaran S. // J. Mol. Struct.: THEOCHEM. 1996. V. 362. P. 77. https://doi.org/10.1016/0166-1280(95)04375-6
- Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
- Ristova M., Petrusevski G., Raskovska A. et al. // J. Mol. Struct. 2009. V. 924–926. P. 93. https://doi.org/10.1016/j.molstruc.2008.12.010
- Mathew V., Jacob S., Xavier L. et al. // J. Rare Earths. 2012. V. 30. P. 245. https://doi.org/10.1016/s1002-0721(12)60039-8
- Brusau E.V., Narda G.E., Pedregosa J.C. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2002. V. 58. P. 1769. https://doi.org/10.1016/s1386-1425(01)00630-8
- Deacon G. // Coord. Chem. Rev. 1980. V. 33. P. 227. https://doi.org/10.1016/s0010-8545(00)80455-5
- Xiao J., Zhang H., Xia Y. et al. // RSC Adv. 2016. V. 6. P. 39861. https://doi.org/10.1039/c6ra03055f
- Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. New Jersey: John Wiley Sons, 2009. https://doi.org/10.1002/9780470405888
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 












