Hydrothermal synthesis of vo2 films from alcohol solution
- Autores: Boytsova О.V.1, Tatarenko А.Y.1, Chendev V.Y.1,2, Makarevich A.M.1, Roslyakov I.V.1, Makarevich О.N.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Plekhanov Russian Economic University
 
- Edição: Volume 70, Nº 3 (2025)
- Páginas: 309-314
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/684979
- DOI: https://doi.org/10.31857/S0044457X25030029
- EDN: https://elibrary.ru/BCFKHA
- ID: 684979
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
M phase vanadium dioxide was firstly synthesized with alcohol as the media instead of water via a simple hydrothermal method on single-crystal r-sapphire substrates. The resulting materials demonstrate a sharp dielectric-metal transition with a change in electrical resistance of about 4 orders of magnitude near the phase transition temperature (68°C). The conditions for synthesizing films comparable in electrophysical characteristics to analogs obtained in aqueous media are established. The proposed method enlarges possibilities for the hydrothermal synthesis of film oxide materials
Palavras-chave
Texto integral
 
												
	                        Sobre autores
О. Boytsova
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
А. Tatarenko
Lomonosov Moscow State University
														Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Chendev
Lomonosov Moscow State University; Plekhanov Russian Economic University
														Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Makarevich
Lomonosov Moscow State University
														Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Roslyakov
Lomonosov Moscow State University
														Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
О. Makarevich
Lomonosov Moscow State University
														Email: boytsovaov@my.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Chen C., Yi X., Zhao X. et al. // Sens. Actuators, A: Phys. 2001. V. 90. № 3. P. 212. https://doi.org/10.1016/S0924-4247(01)00495-2
- Cui Y., Ke Y., Liu C. et al. // Joule. 2018. V. 2. № 9. P. 1707. https://doi.org/10.1016/j.joule.2018.06.018
- Ma H., Wang Y., Lu R. et al. // J. Mater. Chem. C. 2020. V. 8. № 30. P. 10213. https://doi.org/10.1039/d0tc02446e
- Ivanov A.V., Makarevich O.N., Boytsova O.V. et al. // Ceram. Int. 2020. V. 46. № 12. P. 19919. https://doi.org/10.1016/j.ceramint.2020.05.058
- Makarevich O.N., Ivanov A.V., Gavrilov A.I. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 299. https://doi.org/10.1134/S0036023620030080
- Li B., Tian S., Wang Z. et al. // Appl. Surf. Sci. 2021. V. 568. № May. P. 150959. https://doi.org/10.1016/j.apsusc.2021.150959
- Ji H., Liu D., Cheng H. et al. // J. Mater. Chem. C. 2018. V. 6. № 10. P. 2424. https://doi.org/10.1039/C8TC00286J
- Zhao X.Q., Kim C.R., Lee J.Y. et al. // Appl. Surf. Sci. 2009. V. 255. № 8. P. 4461. https://doi.org/10.1016/j.apsusc.2008.11.051
- Podlogar M., Richardson J.J., Vengust D. et al. // Adv. Funct. Mater. 2012. V. 22. № 15. P. 3136. https://doi.org/10.1002/adfm.201200214
- Ganin A.Y., Kienle L., Vajenine G.V. // 2004. V. 16. P. 3233. https://doi.org/10.1002/ejic.200400227
- Jiang M., Zhao M., Li J. // Adv. Mater. Res. 2011. V. 284–286. P. 2177. https://doi.org/10.4028/www.scientific.net/AMR.284-286.2177
- Bykov M., Bykova E., Ponomareva A.V. et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 9003. https://doi.org/10.1002/anie.202100283
- Ivanov A.V., Tatarenko A.Y., Gorodetsky A.A. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 10. P. 10592. https://doi.org/10.1021/acsanm.1c02081
- Yin S., Hasegawa T. // KONA Powder Part. J. 2023. V. 2023. № 40. P. 94. https://doi.org/10.14356/kona.2023015
- Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectrosc. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
- Marini C., Arcangeletti E., Castro D.Di et al. // Phys. Rev. B. 2008. V. 77. P. 235111. https://doi.org/10.1103/PhysRevB.77.235111
- Makarevich A.M., Sobol A.G., Sadykov I.I. et al. // J. Alloys Compd. 2021. V. 853. P. 157214. https://doi.org/10.1016/j.jallcom.2020.157214
- Makarevich A.M., Sadykov I.I., Sharovarov D.I. et al. // J. Mater. Chem. C. 2015. V. 3. № 35. P. 9197. https://doi.org/10.1039/c5tc01811k
- Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




