Crystallization at "Soft" Chemistry Conditions of New Inorganic Fluoride Nanomaterials and Their Application Prospects
- Autores: Gulina L.B.1, Tolstoy V.P.1, Murin I.V.1
- 
							Afiliações: 
							- Saint Petersburg State University
 
- Edição: Volume 69, Nº 3 (2024)
- Páginas: 272-285
- Seção: SOLID STATE CHEMISTRY IN MODERN MATERIALS SCIENCE
- URL: https://rjeid.com/0044-457X/article/view/666592
- DOI: https://doi.org/10.31857/S0044457X24030027
- EDN: https://elibrary.ru/YFLWUY
- ID: 666592
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Peculiarities of formation and growth of crystals of metal fluorides MF2 (where M — Ca, Sr, Pb) and MF3 (where M — Sc, La, Ln) as a result of interaction between components of an aqueous solution of metal salt and gaseous hydrogen fluoride at planar interface at room temperature are considered. Compounds with different crystal structures: PbF2 (pr. gr. Pnma, Fm3m), ScF3 (pr. gr. Pm3m, P6/mmm), LaF3 (pr. gr. P3c1) were chosen as model objects. The factors that have a significant influence on the morphology, size, and ordering of the formed crystals have been determined. The possibility of synthesis of 1D and 2D crystals is shown for some compounds. Probable fields of application of nanomaterials based on synthesized compounds are analyzed. The conclusion is made about the possibility of the interface technique developing for the design of new solid electrolytes, optically active materials, and functional coatings.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
L. Gulina
Saint Petersburg State University
							Autor responsável pela correspondência
							Email: l.gulina@spbu.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
V. Tolstoy
Saint Petersburg State University
														Email: l.gulina@spbu.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
I. Murin
Saint Petersburg State University
														Email: l.gulina@spbu.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
Bibliografia
- Gránásy L., Pusztai T., Börzsönyi T. et al. // Nat. Mater. 2004. V. 3. № 9. P. 645. https://doi.org/10.1038/nmat1190
- Linnikov O.D. // Russ. Chem. Rev. 2014. V. 83. № 4. P. 343. https://doi.org/10.1070/RC2014v083n04ABEH004399
- Ivanov V.K., Fedorov P.P., Baranchikov A. et al. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1204. https://doi.org/10.1070/RCR4453
- Lv W., Huo W., Niu Y. et al. // CrystEngComm. 2015. V. 17. № 4. P. 729. https://doi.org/10.1039/c4ce01640h
- Zhou W. // Crystals. 2019. V. 9. № 1. P. 7. https://doi.org/10.3390/cryst9010007
- Kim H.J., Kim J.H., Jeong J.S. et al. // Nano Letters. 2022. V. 22. № 8. P. 3252. https://doi.org/10.1021/acs.nanolett.1c04966
- Han T., Choi Y., Kwon J.T. et al. // Langmuir. 2020. V. 36. № 33. P. 9843. https://doi.org/10.1021/acs.langmuir.0c01468
- Khodaparast S., Marcos J., Sharratt W.N. et al. // Langmuir. 2021. V. 37. № 1. P. 230. https://doi.org/10.1021/acs.langmuir.0c02821
- Pikin S.A. // Phys. A. Stat. Mech. Appl. 1992. V. 191. № 1–4. P. 139. https://doi.org/10.1016/0378-4371(92)90518-U
- Buchinskaya I., Fedorov P. // Russ. Chem. Rev. 2004. V. 73. P. 404. https://doi.org/10.1070/RC2004v073n04ABEH000811
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела: в 2 т., т. 2. СПб.: Изд-во С.-Петерб. ун-та, 2010. 1000 с.
- Trnovcová V., Fedorov P.P., Furár I. // J. Rare Earths. 2008. V. 26. № 2. P. 225. https://doi.org/10.1016/S1002-0721(08)60070-8
- Trnovcová V., Fedorov P.P., Furár I. // Russ. J. Electrochem. 2009. V. 45. № 6. P. 630. https://doi.org/10.1134/S1023193509060020
- Trnovcová V., Fedorov P.P., Buchinskaya I.I. et al. // Solid State Ionics. 1999. V. 119. № 1–4. P. 181. https://doi.org/10.1016/S0167-2738(98)00501-3
- Sorokin N.I., Fedorov P.P., Sobolev B.P. // Inorg. Mater. 1997. V. 33. № 1. P. 1.
- Hu L., Chen J., Fan L. et al. // J. Am. Ceram. Soc. 2014. V. 97. № 4. P. 1009. https://doi.org/10.1111/jace.12855
- Александров А.А., Брагина А.Г., Сорокин Н.И. и др. // Неорган. материалы. 2023. Т. 59. № 3. С. 306. https://doi.org/10.31857/S0002337X23030016
- Fedorov P.P., Alexandrov A.A. // J. Fluorine Chem. 2019. V. 227. P. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374
- Glazunova T., Boltalin A., Fedorov P. // Russ. J. Inorg. Chem. 2006. V. 51. P. 983. https://doi.org/10.1134/S0036023606070011
- Liu G., Zhou Z., Fei F. et al. // Phys. B (Amsterdam, Neth.). 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
- Han L., Wang Y., Guo L. et al. // Nanoscale. 2014. V. 6. № 11. P. 5907. https://doi.org/10.1039/C4NR00512K
- Schmidt L., Emmerling F., Kirmse H. et al. // RSC Adv. 2014. V. 4. № 1. P. 32. https://doi.org/10.1039/C3RA43769H
- Fujihara S., Kadota Y., Kimura T. // J. Sol-Gel Sci. Technol. 2002. V. 24. № 2. P. 147. https://doi.org/10.1023/A:1015252010509
- Heise M., Scholz G., Kemnitz E. // Solid State Sci. 2017. V. 72. P. 41. https://doi.org/10.1016/j.solidstatesciences.2017.08.010
- Heise M., Scholz G., Duevel A. et al. // Solid State Sci. 2018. V. 77. P. 45. https://doi.org/10.1016/j.solidstatesciences.2018.01.007
- Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. № 11. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
- Zheng Y., Zhang Y., Wu J. et al. // Displays. 2014. V. 35. № 5. P. 273. https://doi.org/10.1016/j.displa.2014.10.002
- Han Y., Zhang Q., Fang S. et al. // Adv. Mater. Res. 2011. V. 335–336. P. 172. https://doi.org/10.4028/www.scientific.net/AMR.335-336.172
- Kuznetsov S.V., Osiko V.V., Tkatchenko E.A. et al. // Russ. Chem. Rev. 2006. V. 75. № 12. P. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
- Abiev R.S., Zdravkov A.V., Kudryashova Y.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 7. P. 1047. https://doi.org/10.1134/S0036023621070020
- Fedorov P.P., Luginina A.A., Tabachkova N.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1211. https://doi.org/10.1134/S0036023622080101
- Fedorov P.P., Kuznetsov S.V., Mayakova M.N. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1525. https://doi.org/10.1134/S003602361110007X
- Mayakova M.N., Kuznetsov S.V., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 7. P. 773. https://doi.org/10.1134/S003602361407016X
- Patle A., Patil R.R., Moharil S.V. // AIP Conf. Proc. 2016. V. 1728. № 1. P. 020353. https://doi.org/10.1063/1.4946404
- Zhou Z., Li W., Song J. et al. // Ceram. Int. 2018. V. 44. № 4. P. 4344. https://doi.org/10.1016/j.ceramint.2017.12.028
- Kuznetsov S.V., Kozlova A.N., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 293. https://doi.org/10.1134/S0036023618030130
- Fedorov P.P., Mayakova M.N., Kuznetsov S.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. P. 1173. https://doi.org/10.1134/S0036023617090078
- Luginina A.A., Fedorov P.P., Kuznetsov S.V. et al. // Inorg. Mater. 2012. V. 48. № 5. P. 531. https://doi.org/10.1134/S002016851205010X
- Yasyrkina D.S., Kuznetsov S.V., Alexandrov A.A. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. № 4. P. 505. https://doi.org/10.17586/2220-8054-2021-12-4-505-511
- Kuznetsov S.V., Nizamutdinov A.S., Proydakova V.Y. et al. // Inorg. Mater. 2019. V. 55. № 10. P. 1031. https://doi.org/10.1134/S002016851910008X
- Fedorov P.P., Luginina A.A., Ermakova J.A. et al. // J. Fluorine Chem. 2017. V. 194. P. 8. https://doi.org/10.1016/j.jfluchem.2016.12.003
- Бучинская И.И., Сорокин Н.И. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 877. https://doi.org/10.31857/S0044457X23600044
- Kuznetsov S.V., Ovsyannikova A.A., Tupitsyna E.A. et al. // J. Fluorine Chem. 2014. V. 161. P. 95. https://doi.org/10.1016/j.jfluchem.2014.02.011
- Gulina L.B., Weigler M., Privalov A.F. et al. // Solid State Ionics. 2020. V. 352. P. 115354. https://doi.org/10.1016/j.ssi.2020.115354
- Fedorov P.P., Osiko V.V., Kuznetsov S.V. et al. // J. Cryst. Growth. 2014. V. 401. P. 63. https://doi.org/10.1016/j.jcrysgro.2013.12.069
- Tolstoi V.P., Gulina L.B. // Russ. J. Gen. Chem. 2013. V. 83. № 9. P. 1635. https://doi.org/10.1134/S1070363213090016
- Tolstoy V.P., Gulina L.B. // J. Nano- Electron. Phys. 2013. V. 5. № 1. P. 01003.
- Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
- Гулина Л.Б. Синтез твердофазных соединений и наноматериалов с участием химических реакций на границе раздела раствор–газ. Автореф. дис. ... д.х.н.: 1.4.15. СПб, 2022. 38 c.
- Forsyth J.B., Wilson C.C., Sabine T.M. // Acta Crystallogr., Sect. A. 1989. V. 45. № 3. P. 244. https://doi.org/10.1107/S0108767388011353
- Achary S.N., Tyagi A.K. // Powder Diffr. 2005. V. 20. № 3. P. 254. https://doi.org/10.1154/1.1948391
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // CrystEngComm. 2017. V. 19. № 36. P. 5412. https://doi.org/10.1039/C7CE01396E
- Fedorov P.P., Trnovcova V., Kocherba G.I. et al. // Kristallografiya. 1995. V. 40. № 4. P. 716.
- Kasatkin I.A., Gulina L.B., Platonova N.V. et al. // CrystEngComm. 2018. V. 20. № 20. P. 2768. https://doi.org/10.1039/C8CE00257F
- Gulina L.B., Tolstoy V.P., Petrov Y.V. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 9779. https://doi.org/10.1021/acs.inorgchem.8b01375
- Yu L., Zhang G., Li S. et al. // J. Cryst. Growth. 2007. V. 299. № 1. P. 184. https://doi.org/10.1016/j.jcrysgro.2006.10.237
- Gulina L.B., Tolstoy V.P. // Russ. J. Gen. Chem. 2014. V. 84. № 8. P. 1472. https://doi.org/10.1134/S1070363214080039
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2015. V. 180. P. 117. https://doi.org/10.1016/j.jfluchem.2015.09.002
- Gulina L.B., Schikora M., Privalov A.F. et al. // Appl. Magn. Reson. 2019. V. 50. № 4. P. 579. https://doi.org/10.1007/s00723-018-1077-z
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2017. V. 200. P. 18. https://doi.org/10.1016/j.jfluchem.2017.05.006
- Cheetham A.K., Fender B.E.F., Fuess H. et al. // Acta Crystallogr., Sect. B. 1976. V. 32. № 1. P. 94. https://doi.org/10.1107/S0567740876002380
- Fan F.-R., Ding Y., Liu D.-Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 34. P. 12036. https://doi.org/10.1021/ja9036324
- Yoo S., Sen R., Simon Z.C. et al. // Chem. Mater. 2023. V. 35. № 16. P. 6274. https://doi.org/10.1021/acs.chemmater.3c00798
- Wen X., Nazemi S.A., da Silva R.R. et al. // Langmuir. 2023. V. 39. № 32. P. 11268. https://doi.org/10.1021/acs.langmuir.3c00799
- Yuan H., Wang Y., Yang C. et al. // ChemPhysChem. 2019. V. 20. № 22. P. 2964. https://doi.org/10.1002/cphc.201900524
- Amano O., Sasahira A., Kani Y. et al. // J. Nucl. Sci. Technol. 2004. V. 41. № 1. P. 55. https://doi.org/10.1080/18811248.2004.9715457
- Smirnov P.R., Grechin O.V., Vashurin A.S. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 382. https://doi.org/10.1134/S0036023622030111
- Zhang H., Banfield J.F. // CrystEngComm. 2014. V. 16. № 8. P. 1568. https://doi.org/10.1039/c3ce41929k
- Zhang J., Huang F., Lin Z. // Nanoscale. 2010. V. 2. № 1. P. 18. https://doi.org/10.1039/b9nr00047j
- Popov P.A., Sidorov А.А., Kul’chenkov Е.А. et al. // Ionics. 2016. V. 23. № 1. P. 233. https://doi.org/10.1007/s11581-016-1802-2
- Takami T., Pattanathummasid C., Kutana A. et al. // J. Phys.: Condens. Matter. 2023. V. 35. P. 29. https://doi.org/10.1088/1361-648X/accb32
- Kühn H.J., Duparré A., Richter W. et al. // Thin Solid Films. 1991. V. 201. № 2. P. 281. https://doi.org/10.1016/0040-6090(91)90117-G
- Zhu G., Liu P., Hojamberdiev M. et al. // J. Mater. Sci. 2010. V. 45. № 7. P. 1846. https://doi.org/10.1007/s10853-009-4168-2
- Wang G., Peng Q., Li Y. // J. Am. Chem. Soc. 2009. V. 131. № 40. P. 14200. https://doi.org/10.1021/ja906732y
- Lyapin A.A., Ryabochkina P.A., Chabushkin A.N. et al. // J. Lumin. 2015. V. 167. P. 120. https://doi.org/10.1016/j.jlumin.2015.06.011
- Волчек А.А., Кузнецов С.В. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1005. https://doi.org/10.31857/S0044457X22602371
- Li Z., Zhang Y., Huang L. et al. // Theranostics. 2016. V. 6. № 13. P. 2380. https://doi.org/10.7150/thno.15914
- Sorokin N.I., Karimov D.N., Grebenev V.V. et al. // Crystallogr. Rep. 2016. V. 61. № 2. P. 270. https://doi.org/10.1134/S1063774516020267
- Kobayashi S., Kokubo M. // Synlett. 2008. V. 2008. № 10. P. 1562. https://doi.org/10.1055/s-2008-1078409
- Cao J., Yuan L., Hu S. et al. // CrystEngComm. 2016. V. 18. № 31. P. 5940. https://doi.org/10.1039/c6ce01198e
- Ai Y., Tu D., Zheng W. et al. // Nanoscale. 2013. V. 5. № 14. P. 6430. https://doi.org/10.1039/C3NR01529G
- Piskunov S., Žguns P.A., Bocharov D. et al. // Phys. Rev. B: Condens. Matter. 2016. V. 93. № 21. P. 214101. https://doi.org/10.1103/PhysRevB.93.214101
- Hu L., Chen J., Sanson A. et al. // J. Am. Chem. Soc. 2016. V. 138. № 27. P. 8320. https://doi.org/10.1021/jacs.6b02370
- Yang C., Tong P., Lin J.C. et al. // Appl. Phys. Lett. 2016. V. 109. № 2. P. 023110. https://doi.org/10.1063/1.4959083
- Greve B.K., Martin K.L., Lee P.L. et al. // J. Am. Chem. Soc. 2010. V. 132. № 44. P. 15496. https://doi.org/10.1021/ja106711v
- Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Chem. Phys. 2015. V. 143. № 23. P. 234702. https://doi.org/10.1063/1.4937415
- Denecke M.A., Gunßer W., Privalov A.V. et al. // Solid State Ionics. 1992. V. 52. № 4. P. 327. https://doi.org/10.1016/0167-2738(92)90179-S
- Wang F., Grey C.P. // Chem. Mater. 1997. V. 9. № 5. P. 1068. https://doi.org/10.1021/cm970044f
- Sorokin N.I., Smirnov A.N., Fedorov P.P. et al. // Russ. J. Electrochem. 2009. V. 45. № 5. P. 606. https://doi.org/10.1134/S1023193509050206
- Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Fluorine Chem. 2016. V. 188. P. 185. https://doi.org/10.1016/j.jfluchem.2016.07.006
- Gulina L.B., Privalov A.F., Weigler M. et al. // Appl. Magn. Reson. 2020. V. 51. № 12. P. 1691. https://doi.org/10.1007/s00723-020-01247-5
- Sinitsyn V.V., Lips O., Privalov A.F. et al. // J. Phys. Chem. Solids. 2003. V. 64. № 7. P. 1201. https://doi.org/10.1016/S0022-3697(03)00050-7
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







