Estimated hansen solubility parameters of low-dimensional vanadium, niobium and tantalum dichalcogenides
- Autores: Nikonov К.S.1, Menshikova Т.К.1, Brekhovskikh М.N.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 69, Nº 5 (2024)
- Páginas: 672-680
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/666525
- DOI: https://doi.org/10.31857/S0044457X24050038
- EDN: https://elibrary.ru/YFMQDC
- ID: 666525
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Low-dimensional flakes of transitional metal dichalcogenides TaX2 (X = S, Se, Te), VSe2 and NbSe2 were acquired using liquid-phase exfoliation process. Hansen solubility parameters of those dispersions were estimated by measuring extinction in a number of various liquid environments. Amount of low-dimensional particles of dichalcogenides in a sample increases with decrease of Hansen distance between dichalcogenide and exfoliation medium. We propose a method to qualitatively estimate the impact exfoliation medium has on the size of forming particles and demonstrate how decrease of the absolute value of δpolar and δhydrogen in examined systems leads to decrease in size of forming flakes.
Sobre autores
К. Nikonov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: nikonovk.s@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Т. Menshikova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: nikonovk.s@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
М. Brekhovskikh
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: nikonovk.s@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Coleman J.N., Lotya M., O’Neill A. et al. // Science. 2011. V. 331. № 6017. Р. 568. https://doi.org/10.1126/science.1194975
- Hildebrand H.J. Solubility of Non-electrolytes. N.Y.: Reinhold Publ. Corp., 1936. 203 p.
- Süß S., Sobisch T., Peukert W. et al. // Adv. Powder Technol. 2018. V. 29. № 7. P. 1550. https://doi.org/10.1016/j.apt.2018.03.018
- Venkatram Sh., Kim Ch., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. № 10. P. 4188. https://doi.org/10.1021/acs.jcim.9b00656
- Садовников С.И. // Журн. неорган. химии. 2023. V. 68. № 3. P. 411. https://doi.org/10.31857/S0044457X22601559
- Mathieu D. // ACS Omega. 2018. V. 3. № 12. P. 17049. https://doi.org/10.1021/acsomega.8b02601
- Gilliam M.S., Yousaf A., Guo Y., et al. // Langmuir. 2021. V. 37. № 3. Р. 1194. https://doi.org/10.1021/acs.langmuir.0c03138
- Cunningham G., Lotya M., Cucinotta C.S. et al. // ACS Nano. 2012. V. 6. № 4. P. 3468. https://doi.org/10.1021/nn300503e
- Kumar S., Pratap S., Joshi N. et al. // Micro and Nanostructures. 2023. V. 181. P. 207627. https://doi.org/10.1016/j.micrna.2023.207627
- Eaglesham D.J., Withers R.L., Bird D.M. // J. Phys. C: Solid State Phys. 1986. V. 19. № 3. P. 359. https://doi.org/10.1088/0022–3719/19/3/006
- Xi X., Zhao L., Wang Z. et al. // Nature Nanotech. 2015. V. 10. P. 765. https://doi.org/10.1038/nnano.2015.143
- Zhou L., Sun Ch., Li X. et al. // Nano Express. 2020. V. 15. P. 20. https://doi.org/10.1186/s11671-020-3250-1
- Mahajan M., Kallatt S., Dandu M. et al. // Commun. Phys. 2019. V. 2. Р. 88. https://doi.org/10.1038/s42005-019-0190-0
- Wu J., Peng J., Yu Zh. et al. // J. Am. Chem. Soc. 2018. V. 140. № 1. Р. 493. https://doi.org/10.1021/jacs.7b11915
- Yang W., Gan L., Li H. et al. // Inorg. Chem. Front. 2016. V. 3. Р. 433. https://doi.org/10.1039/C5QI00251F
- Jia Y., Liao Y., Cai H. // Nanomaterials. 2022. V. 12. P. 2075. https://doi.org/10.3390/nano12122075
- Wang J., Guo C., Guo W. et al. // Chinese Phys. B. 2019. V. 28. № 4. Р. 046802. https://doi.org/10.1088/1674-1056/28/4/046802
- Li H., Tan Y., Liu P. et al. // Adv. Mater. 2016. V. 28. № 40. P. 8945. https://doi.org/10.1002/adma.201602502
- Wang F., Mao J. // Mater. Horiz. 2023. V. 10. № 5. P. 1780. https://doi.org/10.1039/D3MH00072A
- Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.1134/S0036023620090120
- Yang L., Zhao R., Wu D. et al. // Sensors. 2021. V. 21. № 1. P. 239. https://doi.org/10.3390/s21010239
- Hansen Ch.M. Hansen Solubility Parameters: A User’s Handbook. Boca Raton, London, NY: CRC Press, 2007. 544 p.
- Segets D., Gradl J., Taylor R.К. et al. // ACS Nano. 2009. V. 3. № 7. Р. 1703. https://doi.org/10.1021/nn900223b
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
