Co-leaching of Li, Fe, Al, and Cu from active materials of LFP batteries
- Autores: Salomatin A.M.1,2, Zinov’eva I.V.1, Zakhodyaeva Y.A.1, Voshkin A.A.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry RAS
- National Research University Higher School of Economics
 
- Edição: Volume 69, Nº 7 (2024)
- Páginas: 1063-1072
- Seção: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://rjeid.com/0044-457X/article/view/666486
- DOI: https://doi.org/10.31857/S0044457X24070158
- EDN: https://elibrary.ru/XNATAH
- ID: 666486
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Co-leaching of the cathode and anode materials of lithium iron phosphate (LFP) batteries was studied. It was determined that the nature of mineral acid (nitric, sulfuric, hydrochloric) affects the degree of leaching of Li, Fe, Al, and Cu. Hydrochloric acid was chosen as the most suitable leaching agent. The effect of the following parameters of the leaching of active materials was investigated: process duration, temperature, hydrochloric acid concentration, and solid : liquid ratio. For complete leaching of copper, hydrogen peroxide was used as an oxidizing agent. The conditions for the most complete extraction of target elements were found to be 25°C, 2 h, 2 M hydrochloric acid solution, 0.05 M H2O2 solution, solid : liquid ratio 1 : 50. The possibility of sufficiently complete leaching of the main elements from spent LFP batteries at room temperature was demonstrated.
Palavras-chave
Sobre autores
A. Salomatin
Kurnakov Institute of General and Inorganic Chemistry RAS; National Research University Higher School of Economics
														Email: yz@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119071; Moscow, 109028						
I. Zinov’eva
Kurnakov Institute of General and Inorganic Chemistry RAS
														Email: yz@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
Yu. Zakhodyaeva
Kurnakov Institute of General and Inorganic Chemistry RAS
							Autor responsável pela correspondência
							Email: yz@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
A. Voshkin
Kurnakov Institute of General and Inorganic Chemistry RAS
														Email: yz@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
Bibliografia
- The United Nations // 2015.
- The Global EV Outlook // 2023. https://www.iea.org/reports/global-ev-outlook-2023
- Fallah N., Fitzpatrick C. // J. Energy Storage. 2023. V. 68. P. 107740. https://doi.org/10.1016/j.est.2023.107740
- Fan T., Liang W., Guo W. et al. // J. Energy Storage. 2023. V. 71. P. 108126. https://doi.org/10.1016/j.est.2023.108126
- Hu J., Huang W., Yang L. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. https://doi.org/10.1039/D0NR03776A
- Yao Y., Zhu M., Zhao Z. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13611. https://doi.org/10.1021/acssuschemeng.8b03545
- Davis K., Demopoulos G.P. // RSC Sustain. 2023. V. 1. № 8. P. 1932. https://doi.org/10.1039/D3SU00142C
- Dobó Z., Dinh T., Kulcsár T. // Energy Reports. 2023. V. 9. P. 6362. https://doi.org/10.1016/j.egyr.2023.05.264
- Zhou L.-F., Yang D., Du T. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.578044
- Vasconcelos D. da S., Tenório J.A.S., Botelho Junior A.B. et al. // Metals (Basel). 2023. V. 13. № 3. P. 543. https://doi.org/10.3390/met13030543
- Aaltonen M., Peng C., Wilson B.P. et al. // Recycling. 2017. V. 2. № 4. P. 20. https://doi.org/10.3390/recycling2040020
- Song D., Wang T., Liu Z. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 1. P. 107102. https://doi.org/10.1016/j.jece.2021.107102
- Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
- Кожевникова А.В., Уварова Е.С., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2023. Т. 57. № 5. С. 553. https://doi.org/10.31857/S0040357123050111
- Nicol M.J. // Hydrometallurgy. 2020. V. 193. P. 105328. https://doi.org/10.1016/j.hydromet.2020.105328
- Huang Z., Chen T., Zhou Y. et al. // Processes. 2020. V. 8. № 12. P. 1534. https://doi.org/10.3390/pr8121534
- Li H., Xing S., Liu Y. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 9. P. 8017. https://doi.org/10.1021/acssuschemeng.7b01594
- Liu W., Li K., Wang W. et al. // Can. J. Chem. Eng. 2023. V. 101. № 4. P. 1831. https://doi.org/10.1002/cjce.24617
- Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Metals (Basel). 2021. V. 11. № 12. P. 1964. https://doi.org/10.3390/met11121964
- Зиновьева И.В., Федоров А.Я., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2021. Т. 55. № 4. С. 480. https://doi.org/10.31857/S0040357121040199
- Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Processes. 2022. V. 10. № 12. P. 2671. https://doi.org/10.3390/pr10122671
- Dong L., Li Y., Shi P. et al. // J. Power Sources. 2023. V. 582. P. 233564. https://doi.org/10.1016/j.jpowsour.2023.233564
- Binnemans K., Jones P.T. // J. Sustain. Metall. 2023. V. 9. № 2. P. 423. https://doi.org/10.1007/s40831-023-00681-6
- Kadachi A.N., Al-Eshaikh M.A. // X-Ray Spectrometry. 2012. V. 41. № 5. P. 350. https://doi.org/10.1002/xrs.2412
- Iwai M., Majima H., Awakura Y. // Hydrometallurgy. 1988. V. 20. № 1. P. 87. https://doi.org/10.1016/0304-386X(88)90028-X
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
