Phase Equilibria in the Cu2Se–Cu8SiSe6–Cu8GeSe6 System
- Autores: Bairamova U.R.1, Babanly K.N.1, Mashadieva L.F.1, Yusibov Y.A.2, Babanly M.B.1
- 
							Afiliações: 
							- Institute for Catalysis and Inorganic Chemistry
- Ganja State University
 
- Edição: Volume 68, Nº 11 (2023)
- Páginas: 1614-1625
- Seção: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://rjeid.com/0044-457X/article/view/666149
- DOI: https://doi.org/10.31857/S0044457X23600792
- EDN: https://elibrary.ru/YZYIDM
- ID: 666149
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Phase equilibria in the Cu2Se–Cu8SiSe6–Cu8GeSe6 area of the Cu2Se–SiSe2–GeSe2 system have been studied using differential thermal analysis (DTA), X-ray powder diffraction analysis (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDX). The results served to plot a Т–х diagram of the Cu8SiSe6–Cu8GeSe6 boundary system, a series of polythermal sections, and a 300-K isothermal section of the phase diagram and a liquidus surface projection for the title system. The primary crystallization and homogeneity fields of phases, and the characters and temperatures of invariant and monovariant equilibria have been determined. In the Cu8SiSe6–Cu8GeSe6 boundary system, continuous solid solutions have been found to exist between the high-temperature phases of the terminal compounds and extensive homogeneity area based on their low-temperature phases were found. The crystal lattice types and unit cell parameters have been determined for the terminal compounds and both phases of solid solutions using X-ray powder diffraction data. The prepared phases of variable composition are of interest as environmentally friendly functional materials.
Sobre autores
U. Bairamova
Institute for Catalysis and Inorganic Chemistry
														Email: babanlymb@gmail.com
				                					                																			                												                								AZ-1148, Baku, Azerbaijan						
K. Babanly
Institute for Catalysis and Inorganic Chemistry
														Email: babanlymb@gmail.com
				                					                																			                												                								AZ-1148, Baku, Azerbaijan						
L. Mashadieva
Institute for Catalysis and Inorganic Chemistry
														Email: leylafm76@gmail.com
				                					                																			                												                								AZ-1148, Baku, Azerbaijan						
Yu. Yusibov
Ganja State University
														Email: babanlymb@gmail.com
				                					                																			                												                								AZ-2000, Ganja, Azerbaijan						
M. Babanly
Institute for Catalysis and Inorganic Chemistry
							Autor responsável pela correspondência
							Email: babanlymb@gmail.com
				                					                																			                												                								AZ-1148, Baku, Azerbaijan						
Bibliografia
- Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку: Изд-во БГУ, 1993. 342 с.
- He Q., Qian T., Zai J. et al. // J. Mater. Chem. A. 2015. V. 3. P. 20359. https://doi.org/10.1039/C5TA05304H
- Semkiv I., Ilchuk H., Pawlowski M. et al. // Opto-Electronics Rev. 2017. V. 25. № 1. P. 37. https://doi.org/10.1016/j.opelre.2017.04.002
- Yang C., Luo Y., Xia Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 56329. https://doi.org/10.1021/acsami.1c17548
- Chen T., Zhang L., Zhang Z. et al. // ACS Appl. Mater. Interfaces. 2019. V. 13. P. 56329. https://doi.org/10.1021/acsami.9b13313
- Studenyak A., Pogodin V., Studenyak V. et al. // Solid State Ionics. 2020. V. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183
- Иванов Щиц А.К., Мурин И.В. Ионика твердого тела. СПб.: Изд-во С. Петерб. Ун-та, 2000. Т. 1. С. 616.
- Heep B.K., Weldert K.S., Krysiak Y. et al. // Chem. Mater. 2017. V. 29. № 11. P. 4833. https://doi.org/10.1021/acs.chemmater.7b00767
- Ayoola O.M., Buldum A., Farhad S. et al. // Energies. 2022. V. 15. P. 7288. https://doi.org/10.3390/en15197288
- Sardarly R.M., Ashirov G.M., Mashadiyeva L.F. et al. // Mod. Phys. Lett. B. 2022. V. 36. № 32. P. 2250171. https://doi.org/10.1142/S0217984922501718
- Pogodin A.I., Filep M.J., Studenyak V.I. et al. // J. Alloys Compd. 2022. V. 926. P. 166873. https://doi.org/10.1016/j.jallcom.2022.166873
- Zhou L., Minafra N., Zeier W.G. et al. // Acc. Chem. Res. 2021. V. 54. № 12. P. 2717. https://doi.org/10.1021/acs.accounts.0c00874
- Lin S., Li W., Pei Y. // Mater. Today. 2021. V. 48. P. 198. https://doi.org/10.1016/j.mattod.2021.01.007
- Li Z., Liu C., Zhang X. et al. // Org. Electron. 2017. V. 45. P. 247. https://doi.org/10.1016/j.orgel.2017.03.029
- Jin Z., Xiong Y., Zhao K. et al. // Mater. Today Phys. 2021. V. 19. P. 100410. https://doi.org/10.1016/j.mtphys.2021.100410
- Fan Y., Wang G., Wang R. et al. // J. Alloys Compd. 2020. V. 822. P. 153665. https://doi.org/10.1016/j.jallcom.2020.153665
- Shen X., Yang C., Liu Y. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 2. P. 2168. https://doi.org/10.1021/acsami.8b19819
- Jin M., Lin S., Li W. et al. // Chem. Mater. 2019. V. 31. № 7. P. 2603. https://doi.org/10.1021/acs.chemmater.9b00393
- Jiang B., Qiu P., Eikeland E. et al. // J. Mater. Chem. C. 2017. V. 5. № 4. P. 943. https://doi.org/10.1039/C6TC05068A
- Yang C., Luo Y., Li X. et al. // RSC Advances. 2021. V. 11. № 6. P. 3732. https://doi.org/10.1039/D0RA10454J
- Li W., Lin S., Ge B. et al. // Adv. Sci. 2016. V. 3. P. 1600196. https://doi.org/10.1002/advs.201600196
- Jiang Q., Li S., Luo Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 54653. https://doi.org/10.1021/acsami.0c15877
- West D.R.F. Ternary Phase Diagrams in Materials Science. Boca Raton: CRC Press, 2013. 240 p. https://doi.org/10.1201/9781003077213
- Saka H. Introduction to Phase Diagrams in Materials Science and Engineering. London: World Scientific Publishing Company, 2020. 188 p. https://doi.org/10.1142/11368
- Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- Imamaliyeva S.Z., Babanly D.M., Tagiev D.B. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1703. https://doi.org/10.1134/S0036023618130041
- Новоселова А.В., Лазарев В.Б. Физико-химические свойства полупроводниковых веществ: Справочник. М.: Наука, 1979. 340 с.
- Hahn H., Schulze H., Sechser L. // Naturwissenschaften. 1965. V. 52. № 15. P. 451. https://doi.org/10.1007/BF00627053
- Gorochov O. // Bull. Soc. Chim. Fr. 1968. № 6. P. 2263.
- Алиева З.М., Багхери С.М., Алвердиев И.Дж. и др. // Неорган. материалы. 2014. Т. 50. № 10. С. 1063.
- Bagheri S.M., Imamaliyeva S.Z., Mashadiyeva L.F. et al. // Int. J. Adv. Sci. Tech. res. 2014. V. 4. № 2. P. 291.
- Алвердиев И.Дж., Багхери С.М., Алиева З.М. и др. // Неорган. материалы. 2017. Т. 53. № 8. С. 801. https://doi.org/10.1134/S0020168517080027
- Aliyeva Z.M., Bagheri S.M., Aliev Z.S. et al. // J. Alloys Compd. 2014. V. 611. P. 395. https://doi.org/10.1016/j.jallcom.2014.05.112
- Alverdiyev I.J., Aliev Z.S., Bagheri S.M. et al. // J. Alloys Compd. 2017. V. 691. P. 255. https://doi.org/10.1016/j.jallcom.2016.08.251
- Машадиева Л.Ф., Алиева З.М., Мирзоева Р.Дж. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 606.
- Bayramova U., Poladova A., Mashadiyeva L. // New Materials, Compounds and Applications. 2022. V. 6. № 3. P. 276.
- Binary Alloy Phase Diagrams / Ed. Massalski T.B. ASM International. Materials Park. Ohio, 1990. P. 3589. https://doi.org/10.1002/adma.19910031215
- Шпак О., Когут Ю., Федорчук А. и др. // Научн. вестн. Среднеевроп. нац. ун-та им. Леси Украинки. Сер.: Хим. науки. 2014. Т. 21. № 298. С. 39.
- Олексеюк И.Д., Пискач Л.В., Парасюк О.В. // Журн. неорган. химии. 1998. Т. 43. № 3. С. 516.
- Ishii M., Onoda M., Shibata K. // Solid State Ionics. 1999. V. 121. № 1–4. P. 11. https://doi.org/10.1016/S0167-2738(98)00305-1
- Tomashik V. /// Non-Ferrous Metal Ternary Systems. Semiconductor Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Berlin: Springer-Verlag Heidelberg, 2006. P. 288. https://doi.org/10.1007/10915981_23
- Onoda M., Ishii M., Pattison P. et al. // J. Solid State Chem. 1999. V. 146. P. 355. https://doi.org/10.1006/jssc.1999.8362
- Мороз В. // Изв. Акад. наук СССР. Неорган. материалы. 1990. Т. 26. С. 1830.
- Глазов В.М., Бурханов А.С., Салеева Н.М. // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. № 5. С. 917.
- Луцык В.И., Воробьева В.П., Шодорова С.Я. // Журн. физ. химии. 2015. Т. 89. № 13. С. 2331.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 












