Effects of the Preparation Method on the Dielectric Properties of Ni–Al Layered Double Hydroxides
- Autores: Agafonov A.V.1, Shibaeva V.D.1, Kraev A.S.1, Sirotkin N.A.1, Titov V.A.1, Khlyustova A.V.1
- 
							Afiliações: 
							- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
 
- Edição: Volume 68, Nº 1 (2023)
- Páginas: 4-9
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/665317
- DOI: https://doi.org/10.31857/S0044457X22600967
- EDN: https://elibrary.ru/GVEMZS
- ID: 665317
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Ni–Al layered double hydroxides (LDHs) are of interest as functional materials. The effects of preparation methods on the dielectric properties of Ni–Al layered double hydroxides were studied on samples prepared from solution (by coprecipitation and a hydrothermal process) and by plasma technology. The prepared layered structures were characterized by advanced analytical methods. The high ζ potentials of the particles prepared in suspensions evidence their high aggregation stability. X-ray powder diffraction and IR spectroscopy were used to determine the phase composition of samples and to identify the interlayer anion. The plasma between Al and Ni electrodes in distilled bulk water gives rise to the formation of Ni–Al LDHs with hydroxide ion as the interlayer anion. Thermal properties of the structures prepared were studied by thermal analysis. The results of dielectric measurements are presented.
Palavras-chave
Sobre autores
A. Agafonov
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
V. Shibaeva
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
A. Kraev
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
N. Sirotkin
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
V. Titov
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
A. Khlyustova
G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kav@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
Bibliografia
- Tang S., Yao Y., Chen T. et al. // Anal. Chim. Acta. 2020. V. 1103. P. 32.
- Fan G., Li F., Evans D.G. et al. // Chem. Soc. Rev. 2014. V. 43. P. 7040.
- Baig N., Sajid M. // Trends Environ. Anal. Chem. 2017. V. 16. P. 1.
- Forano C., Bruna F., Mousty C. et al. // Chem. Record. 2018. V. 18. P. 1150.
- Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172.
- Lahkale R., Elhatimi W., Sadik R. et al. // Appl. Clay Sci. 2018. V. 158. P. 55.
- Bouragba F.Z., Elhatimi W., Lahkale R. et al. // Bull. Mater. Sci. 2020. V. 43 P. 1.
- Khalaf M.M., Ibrahimov H.G., Ismailov E.H. // Chem. J. 2012. V. 2. P. 118.
- Guo T., Yao M.S., Lin Y.H. et al. // CrystEngComm. 2015. V. 17. P. 3551.
- Evans D.G., Slade R.C. Structural aspects of layered double hydroxides. Berlin: Springer, 2006.
- Khussnutdinov V.R., Isupov V.P. // Russ. J. Appl. Chem. 2020. V. 93. № 5. P. 639. [Хуснутдинов В.Р., Исупов В.П. // Журн. прикл. химии. 2020. Т. 93. № 5. С. 627.]
- Hur T.B., Phuoc T.X., Chyu M.K. // Opt. Lasers Eng. 2009. V. 47. № 6. P. 695.
- Karpukhin V.T., Malikov M.M., Borodina T.I. et al. // High Temp. 2013. V. 51. P. 277. [Карпухин В.Т., Маликов М.М., Бородина Т.И. и др. // Теплофизика высоких температур. 2013. Т. 51. № 2. С. 311.]
- Tao X., Yang C., Huang L. et al. // Appl. Surf. Sci. 2020. V. 507. P. 145053.
- Chen H., Zhao Q., Gao L. et al. // ACS Sust. Chem. Eng. 2019. V. 7. № 4. P. 4247.
- Levashov E.A., Mukasyan A.S., Rogachev A.S. et al. // Int. Mater. Rev. 2017. V. 62. P. 203.
- Prinetto F., Ghiotti G., Graffin P. et al. // Microporous Mesoporous Mater. 2000. V. 39. P. 229.
- Agafonov A.V., Sirotkin N.A., Titov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 253. [Агафонов А.В., Сироткин Н.А., Титов В.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 271.]
- Yun S.K., Pinnavaia T.J. // Chem. Mater. 1995. V. 7. P. 348.
- Wang S.L., Liu C.H., Wang M.K. et al. // Appl. Clay Sci. 2009. V. 43. P. 79.
- Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part A: Theory and Applications in Inorganic Chemistry. New Jersey: Wiley, 2009.
- Cavani F., Trifiro F., Vaccari A. // Catal. Today. 1991. V. 11. P. 173.
- Koritnig S., Süsse P. // Tschermaks Min. Petr. Mitt. 1975. V. 22. P. 79.
- Roobottom H.K., Jenkins H.D.B., Passmore J. et al. // J. Chem. Educ. 1999. V. 76. P. 1570.
- Białas A., Mazur M., Natkański P. et al. // Appl. Surf. Sci. 2016. V. 362. P. 297.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





