ESTIMATION OF FLUCTUATIONS OF ALUMINUM ELECTRODE POTENTIAL IN CHLORIDE-CONTAINING AT ANODIC POLARIZATION BY MICROCURRENTS
- Autores: Nigmatullin R.R.1, Dresvyannikov A.F.2
- 
							Afiliações: 
							- Kazan National Research Technical named after A. N. Tupolev
- Kazan National Research Technological University
 
- Edição: Volume 99, Nº 6 (2025)
- Páginas: 942-951
- Seção: ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
- ##submission.dateSubmitted##: 26.09.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://rjeid.com/0044-4537/article/view/691392
- DOI: https://doi.org/10.31857/S0044453725060143
- EDN: https://elibrary.ru/hhvikf
- ID: 691392
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The structure of integral curves obtained by processing chronopotentiograms (CPG) of an aluminum anode polarized by a weak (at the level of one to several μA/cm2) current in chloride-containing medium is self-similar. This universal property allows us to find their fitting function and calculate the reduced (compressed dependence; the initial number of points is 1000, described by the number of AFC-14 modes). The initial curve is invariant with respect to its transformed counterpart after five-fold compression. For two different types of data, obtained with open circuit and with metal polarization by microcurrent, a common fitting platform related to its parameters can be obtained. There are various methods of detrending: i. e., obtaining a trend from the original trendless noise. The simplest method of obtaining a trend that does not give computational errors is obtained from a numerical integration formula using the trapezoidal method. It is this trend, obtained from the original trendless sequence without additional data processing errors, that it makes sense to define as a clear trend. The approximation parameters can be used to compare various random processes, including those caused by reactions on the metal surface with changes in its microrelief during redox processes.
			                Sobre autores
R. Nigmatullin
Kazan National Research Technical named after A. N. Tupolev
														Email: renigmat@gmail.com
				                					                																			                												                								420015, Kazan, Russia						
A. Dresvyannikov
Kazan National Research Technological University
														Email: a.dresvyannikov@mail.ru
				                					                																			                												                								420015, Kazan, Russia						
Bibliografia
- Nişancioğlu K., Holtan H. // Electrochim. Acta. 1979. № 24. P. 1229
- Hurlen T., Lian H., Ødegard O.S., Valant T. // Electrochim. Acta. 1984. № 29. P. 579
- Lenderink H.J.W., van der Linden M., de Wit J.H.W. // Electrochim. Acta. 1993. № 38. P. 1989
- Kolics A., Besing A.S, Baradlai P., et al. // J. Electrochem. Soc. 2001. № 148. P. B251.
- Verpoort F., Haemers T., Roose P., Maes J.P. // Appl. Spectr. 1999. № 53. P. 1528.
- Al Mayouf A.M. // Corr. Prev. Control. 1996. 43. P. 68.
- Radošević J., Kliškić M., Despić A.R. // J. Appl. Electrochem. 1992. № 22. P. 649.
- Garrigues L., Pebere N., Dabosi F. // Electrochim. Acta. 1996. № 41. P. 1209.
- Burri G., Luedi W., Haas O. // J. Electrochem. Soc. 1989. № 136. P. 267.
- Equey J.-F., Müller S., Desilvestro J., Haas O. // Ibid. Soc. 1992. № 139. P. 1499.
- Breslin C.B., Rudd A.L. // Corros. Sci. 2000. № 42. P. 1023.
- Aballe A., Bethencourt M., Botana F.J., Marcos M. // Electrochim. Acta. 1999. № 44. P. 4805.
- Pagitsas M., Sazou D. // J. Electroanal. Chem. 1999. № 471. P. 132.
- Uruchurtu J.C., Dawson J.L. // Corrosion. 1987. № 43. P. 19.
- Isaac J.W., K.R. Hebert J. // Electrochem. Soc. 1999. № 146. P. 502.
- Mansfeld F., Xiao H., Han L.T., Lee C.C. // Prog. Org. Coat. 1997. № 30. P. 89.
- Mansfeld F., Lee C.C. // J. Electrochem. Soc. 1997. № 144. P. 2068.
- Greisiger H., Schauer T. // Prog. Org. Coat. 2000. № 39. P. 31.
- Mills D.J., Mabbutt S. // Ibid. 2000. № 39. P. 41.
- Nagiub A., Mansfeld F. // Corros. Sci. 2001. № 43. P. 2001.
- Tan Y.J., Bailey S., Kinsella B. // Ibid. 2002. № 44. P. 1277.
- Aballe A., Bethencourt M., Botana F.J., et al. // Electrochim. Acta. 2002. № 47. P. 1415.
- Mansfeld F., Sun Z., Hsu C.H. // Ibid. 2001. № 46. P. 3651.
- Smulko J., Darowicki K., Zieliński A. // Ibid. 2002. № 47. P. 1297.
- Bierwagen G.P. //J. Electrochem. Soc. 1994. № 141. P. L155
- Bertocci U., Gabrielli C., Huet F., Keddam M. // Ibid. 1997. № 144. P. 31.
- Mansfeld F., Xiao H. // Ibid. 1994. № 141. P. 1403.
- Xiao H., Mansfeld F. // Ibid. 1994. № 141. P. 2332.
- Mansfeld F., Sun Z., Hsu C.H., Nagub A. // Corros. Sci. 2001. № 43. P. 341.
- Cheng Y.F., Luo J.L., Wilmott M. // Electrochim. Acta. 2000. № 45. P. 1763.
- Bautista A., Bertocci U., Huet F. // J. Electrochem. Soc. 2001. № 148. P. B412.
- Lowe A.M., Eren H., Bailey S.I. // Corros. Sci. 2003. № 45. P. 941.
- Cottis R.A., Al-Awadhi M.A.A., Al-Mazeedi H., Turgoose S. // Electrochim. Acta. 2001. № 46. P. 3665.
- Smulko J., Darowicki K. // J. Electroanal. Chem. 2003. № 545. P. 59.
- Aballe A., Huet F. // J. Electrochem. Soc. 2002. № 149. P. B89.
- Cottis R.A. Interpretation of electrochemical noise data // Corrosion. 2001. 57. P. 265.
- Mansfeld F. // Proceedings of the 18th Int. Conference on Noise and Fluctuations-ICNF; 2005 Aug 24; Los Angeles, CA (USA): American Institute of Physics; 2005. P. 623.
- Pride S.T, Scully J.R, Hudson J.L. // J. Electrochem Soc. 1994. № 141. P. 3028.
- Lou W, Ogura K. // Electrochim. Acta. 1995. № 40. P. 667.
- Sazou D., Diamantopoulou A., Pagitsas M. // J. Electroanal Chem. 2000. № 489. P. 1.
- Bassett M.R, Hudson J.L. // J. Phys. Chem. 1989. № 93. P. 2731.
- Dewald H.D., Parmananda P., Rollins R.W. // J. Electrochem Soc. 1993. № 140. P. 1969.
- Press W.H., Flannery B.P., Teukolsky S.A. et al. // Cambridge (UK). V. 1. Cambridge University Press, 1992. 963 p.
- Schauer T., Greisiger H., Dulog L. // Electrochim Acta. 1998. № 43. P. 2423.
- Burg J.P. Modern Spectrum Analysis. / Ed by D.G. Childers. New York (NY): IEEE Press, 1978. 334 p.
- Pujar M.G., Anita T., Shaikh H., et al. // Int. J. Electrochem. Sci. 2007. № 2. P. 301.
- Bertocci U., Frydman J., Gabrielli C., et al. // J. Electrochem. Soc. 1998. № 145. P. 2780.
- Van den Bos A. // IEEE Trans. Inform. Theory. 1997. № 17. P. 493.
- Edward J.A., Fitelson M.M. // IEEE Trans. Inform. Theory. 1973. № 19. P. 232.
- Nigmatullin Raoul R., Yang Quan Chen // Mathematics. 2023. № 11. P. 278.
- Nigmatullin R.R., Lino P., Maione G. // New Digital Signal Processing Methods Applications to Measurement and Diagnostics. ISBN978-3-030-45359-6 (eBook). https://doi.org/10.1007/978-3-030-45359-6. Springer, 2020.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
