SOME ASPECTS OF THE ENDOHEDRAL CLUSTER ORIENTATION IN THE EXOHEDRALLY FUNCTIONALIZED DySc2N@C80 AND Dy2ScN@C80 MOLECULES
- Autores: Pykhova A.D.1, Sudarkova S.M.1, Ioffe I.N.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Volume 99, Nº 6 (2025)
- Páginas: 866-871
- Seção: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- ##submission.dateSubmitted##: 26.09.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://rjeid.com/0044-4537/article/view/691384
- DOI: https://doi.org/10.31857/S0044453725060055
- EDN: https://elibrary.ru/hhajke
- ID: 691384
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We present a computational study of the most energetically stable conformations and properties there of in the dysprosium endohedral compounds of the M3N@C80 type modified by exhohedral function alization. We report the most stable configurations of the endohedral cluster and demonstrate good perfor mance of the density functional theory (DFT) in combination with the large-core effective core potential (ECP) that incorporates the 4f-shell of the dysprosium ions.
			                Sobre autores
A. Pykhova
Lomonosov Moscow State UniversityМосква, Россия
S. Sudarkova
Lomonosov Moscow State UniversityМосква, Россия
I. Ioffe
Lomonosov Moscow State University
														Email: ioffe@phys.chem.msu.ru
				                					                																			                												                								Москва, Россия						
Bibliografia
- Popov A.A., Yang S., Dunsch L. // Chem. Rev. 2013. V. 113. № 8. P. 5989.
- Liu F., Spree L., Krylov D.S. et al. // Acc. Chem. Res. 2019. V. 52. № 10. P. 2981.
- Velkos G., Krylov D.S., Kirkpatrick K. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 18. C. 5891.
- Wang Y., Xiong J., Su J. et al. // Nanoscale. 2020. V. 12. № 20. P. 11130.
- Stevenson S., Rice G., Glass T. et al. // Nature. 1999. V. 401. № 6748. C. 55.
- Popov A.A., Pykhova A.D., Ioffe I.N. et al. // J. Am. Chem. Soc. 2014. V. 136. № 38. P. 13436.
- Pykhova A.D., Semivrazhskaya O.O., Samoylova N.A. et al. // Dalton Trans. 2020. V. 49. № 26. P. 9137.
- Westerström R., Dreiser J., Piamonteze C. et al. // J. Am. Chem. Soc. 2012. V. 134. № 24. P. 9840.
- Westerström R., Dreiser J., Piamonteze C. et al. // Phys. Rev. B. 2014. V. 89. № 6. P. 060406(R).
- Vieru V., Ungur L., Chibotaru L.F. // J. Phys. Chem. Lett. 2013. V. 4. № 21. P. 3565.
- Khinevich V.E., Sudarkova S.M., Ioffe I.N. // Phys. Chem. Chem. Phys. 2024. V. 26. № 42. P. 26765.
- Granovsky A.A. // Firefly v. 8.2, http://classic.chem.msu.su/gran/firefly/index.html
- Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- Granovsky A.A. // J. Chem. Phys. 2011. V. 134. № 21. P. 214113.
- Dolg M., Stoll H., Savin A., Preuss H. // Theor. Chim. Acta. 1989. V. 75. № 3. P. 173.
- Dolg M., Stoll H., Preuss H. // J. Chem. Phys. 1989. V. 90. № 3. P. 1730.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- Goryunkov A.A., Kornienko E.S., Magdesieva T.V. et al. // Dalton Trans. 2008. № 48. C. 6886.
- He D., Du X., Xiao Z., Ding L. // Org. Lett. 2014. V. 16. № 2. P. 612.
- Aroua S., Garcia-Borras M., Bolter M.F. et al. // J. Am. Chem. Soc. 2015. V. 137. № 1. P. 58.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
