Dielectric Properties of Graphite Oxide Polymeric Composites Based on N-Vinylpirrolidone Copolymers with Different Topologies
- Autores: Simbirtseva G.V.1, Babenko C.D.1, Perepelitsina E.O.1, Komendant P.I.1, Kurmaz S.V.1
- 
							Afiliações: 
							- Institute of Problems of Chemical Physics, Russian Academy of Sciences
 
- Edição: Volume 97, Nº 1 (2023)
- Páginas: 175-182
- Seção: ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.01.2023
- URL: https://rjeid.com/0044-4537/article/view/668898
- DOI: https://doi.org/10.31857/S0044453723010302
- EDN: https://elibrary.ru/BDGVJY
- ID: 668898
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The dielectric properties of graphite oxide composite materials based on a biocompatible branched copolymer of N-vinylpyrrolidone with 1,6-hexanediol dimethacrylate and a cross-linked copolymer of N‑vinylpyrrolidone with triethylene glycol dimethacrylate are studied. High-frequency (9.8 GHz) and low-frequency (25 Hz–1 MHz) measurements of the complex permittivity and electrical conductivity of polymer composites are carried out and their dependences on the polymer matrix topology and formation conditions are analyzed. Copolymers and composites based on them are characterized by IR, UV, and visible spectroscopy, dynamic light scattering, and the surface morphology of nanocomposite polymer matrices is characterized by optical microscopy. It is shown that the proposed electrophysical approach makes it possible to additionally characterize polymer matrices with carbon nanofillers.
Palavras-chave
Sobre autores
G. Simbirtseva
Institute of Problems of Chemical Physics, Russian Academy of Sciences
														Email: sgvural@mail.ru
				                					                																			                												                								142432, Chernogolovka, Russia						
C. Babenko
Institute of Problems of Chemical Physics, Russian Academy of Sciences
														Email: sgvural@mail.ru
				                					                																			                												                								142432, Chernogolovka, Russia						
E. Perepelitsina
Institute of Problems of Chemical Physics, Russian Academy of Sciences
														Email: sgvural@mail.ru
				                					                																			                												                								142432, Chernogolovka, Russia						
P. Komendant
Institute of Problems of Chemical Physics, Russian Academy of Sciences
														Email: sgvural@mail.ru
				                					                																			                												                								142432, Chernogolovka, Russia						
S. Kurmaz
Institute of Problems of Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: sgvural@mail.ru
				                					                																			                												                								142432, Chernogolovka, Russia						
Bibliografia
- Chen Y., Li J., Li T. et al. // Carbon. 2021. V. 180. P. 163. https://doi.org/10.1016/j.carbon.2021.04.091
- Кулакова И.И., Лисичкин Г.В. // Журн. общ. химии. 2020. Т. 90. № 10. С. 1601. Kulakova I.I., Lisichkin G.V. // Russ. J. Gen. Chem. 2020. V. 90. № 10. P. 1921.https://doi.org/10.1134/S107036322010015110.1134/S1070363220100151https://doi.org/10.31857/S0044460X20100157
- Huang X., Leng T., Georgiou T. // Scient. Rep. 2018. 8: 43. https://doi.org/10.1038/s41598-017-16886-1
- Shareena T.PD., McShan D., Dasmahapatra A.K., Tchounwou P.B. // Nano-Micro Lett. 2018. 10: 53. https://doi.org/10.1007/s40820-018-0206-4
- Еремина Е.А., Каплин А.В., Елисеев А.А. и др. // Российские нанотехнологии. 2018. Т. 13. № 3–4. С. 49. Eremina E.A., Kaplin A.V., Eliseev A.A. et al. // Nanotechnol. Russ. 2018. V. 13. №. 3–4. P. 152. https://doi.org/10.1134/S1995078018020027
- Курмаз С.В., Фадеева Н.В., Кнерельман Е.И., Давыдова Г.И. // Высокомолек. соед. Б. 2018. Т. 60. № 2. С. 147. Kurmaz S.V, Fadeeva N.V., Knerel’man E.I., Davydova G.I. // Polymer Science. Ser. В. 2018. V. 60. № 2. P. 195.https://doi.org/10.1134/S156009041802003310.1134/S1560090418020033https://doi.org/10.7868/S2308113918020055
- Kurmaz S.V., Fadeeva N.V., Gorshkova A.I. et al. // Materials. 2021. V. 14. P. 6757. https://doi.org/10.3390/ma14226757
- Курмаз С.В., Фадеева Н.В., Кнерельман Е.И., Давыдова Г.И. // Журн. прикл. химии. 2018. Т. 91. № 1. С. 115. Kurmaz S.V., Fadeeva N.V., Knerel’man E.I., Davydova G.I. // Russ. J. Appl. Chem. 2018. V. 91. № 1. P. 105–112. https://doi.org/10.1134/S1070427218010172
- Wei C., Akinwolemiwa B., Yu L. et al. Polymer Composites with Functionalized Nanoparticles. Elsevier Inc., 2019. P. 211. https://doi.org/10.1016/C2017-0-00517-7
- Zhang Y., Zhang Q., Hou D., Zhang J. // Applied Surface Science. 2020. V. 504. 144152. https://doi.org/10.1016/j.apsusc.2019.144152
- Курмаз С.В., Пыряев А.Н. // Высокомолек. соед. Б. 2010. Т. 52. № 1. С. 107. Kurmaz S.V., Pyryaev A.N. // Polymer Sci. В. 2010. V. 52. № 1–2. P. 1. https://doi.org/10.1134/S156009041001001X
- Арбузов А.А., Мурадян В.Е., Тарасов Б.П. // Изв. АН. Сер. хим. 2013. № 9. С. 1962. Arbuzov A.A., Muradyan V.E., Tarasov B.P. // Russ. Chem. Bull. 2013. V. 62 № 9. P. 1962. https://doi.org/10.1007/s11172-013-0284-x
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60. Simbirtseva G.V., Piven’ N.P., Babenko S.D. // Russ. J. Phys. Chem. В. 2020. V. 14. P. 980. https://doi.org/10.1134/S199079312006028710.1134/S1990793120060287https://doi.org/10.31857/S0207401X20120146
- Арбузов А.А., Мурадян В.Е., Тарасов Б.П. и др. // Журн. физ. химии. 2016. Т. 90. № 5. С. 663. Arbuzov A.A., Muradyan V.E., Tarasov B.P. et al. // Russ. J. Phys. Chem. A. 2016. V. 90. P. 907. https://doi.org/10.1134/S003602441605007110.1134/S0036024416050071https://doi.org/10.7868/S0044453716050071
- Kurmaz S.V., Fadeeva N.V., Ignat’ev V.M. et al. // Molecules. 2020. V. 25. P. 6015. https://doi.org/10.3390/molecules25246015
- Compton O.C., Cranford S.W., Putz K.W. et al. // ACS Nano. 2012. V. 6. № 3. P. 2008. https://doi.org/10.1021/nn202928w
- Soler-Crespo R.A., Gao W., Mao L. et al // ACS Nano. 2018. V. 12. № 6. P. 6089. https://doi.org/10.1021/acsnano.8b02373
- Zhang Y., Yang T., Jia Y. et al // Chem. Phys. Lett. 2018. V. 708 P. 177. https://doi.org/10.1016/j.cplett.2018.08.023
- Шабанов Н.C., Ахмедов А.К., Муслимов А.Э. и др. // Российские нанотехнологии. 2019. Т. 14. № 3–4. С. 17. Shabanov N.S., Akhmedov A.K., Muslimov A.E. et al. // Nanotechnologies in Russia. 2019. V. 14. № 3–4. P. 104.https://doi.org/10.1134/S199507801902012510.1134/S1995078019020125https://doi.org/10.21517/1992-7223-2019-3-4-17-20
- Alfonso M., Yuan J., Tardani F. et al. // J. Phys.: Mater. 2019. V. 2. 045002. https://doi.org/10.1088/2515-7639/ab2666
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




