Stability Constants of Nickel(II) Complexes with [2.2.2]Cryptand in Aqueous Ethanol Solutions
- Authors: Isaeva V.A.1, Pogodina E.I.1, Katolikova A.S.1, Sharnin V.A.1
- 
							Affiliations: 
							- Ivanovo State University of Chemistry and Technology
 
- Issue: Vol 97, No 4 (2023)
- Pages: 505-511
- Section: PHYSICAL CHEMISTRY OF SOLUTIONS
- Submitted: 27.02.2025
- Published: 01.04.2023
- URL: https://rjeid.com/0044-4537/article/view/668757
- DOI: https://doi.org/10.31857/S0044453723040155
- EDN: https://elibrary.ru/TFXMBE
- ID: 668757
Cite item
Abstract
The stability constants of nickel(II) complexes with [2.2.2]cryptand in aqueous ethanol solutions with a variable concentration of the organic co-solvent were determined by potentiometry at Т = 298 K and µ → 0. It was found that mononuclear, binuclear, and protonated nickel(II) cryptates can form in solution, whose stability increases with the ethanol content. The Gibbs energies of nickel(II) ion transfer from water to the aqueous ethanol solvent were calculated using published data. The contributions of resolvation of reagents in water–ethanol mixtures to the change in the stability of nickel(II) complexes with [2.2.2]cryptand were evaluated.
About the authors
V. A. Isaeva
Ivanovo State University of Chemistry and Technology
														Email: kvol1969@gmail.com
				                					                																			                												                								153000, Ivanovo, Russia						
E. I. Pogodina
Ivanovo State University of Chemistry and Technology
														Email: kvol1969@gmail.com
				                					                																			                												                								153000, Ivanovo, Russia						
A. S. Katolikova
Ivanovo State University of Chemistry and Technology
														Email: kvol1969@gmail.com
				                					                																			                												                								153000, Ivanovo, Russia						
V. A. Sharnin
Ivanovo State University of Chemistry and Technology
							Author for correspondence.
							Email: kvol1969@gmail.com
				                					                																			                												                								153000, Ivanovo, Russia						
References
- Dilber G., Kantekin H., Basaran D. et al. // Pak. J. Anal. Environ. Chem. 2014. V. 15. № 2. P. 20.
- Salman A.D., Juzsakova T., Jalhoom M.G. et al. // J. Sustainable Metallurgy. 2022. V. 8. https://doi.org/10.1007/s40831-021-00484-7
- Taurozzi J.S., Redko M.Y., Manes K.M. et al. // Separat. Purificat. Technol. 2013. V. 116. P. 415. https://doi.org/10.1016/j.seppur.2013.06.005
- Amendola A., Bergamaschi G., Boiocchi M. et al. // Chem. Sci. 2014. V. 5. P. 1820. https://doi.org/10.1039/c3sc53504e
- Ekanger L.A., Polin L.A., Shen Y. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 48. P. 14398. https://doi.org/10.1002/anie.201507227
- Bailey M.D., Jin G-X., Carniato F. et al. // Chem. A Europ. J. 2021. V. 27. № 9. P. 3114. https://doi.org/10.1002/chem.202004450
- Leone L., Guarnieri L., Martinelli J. et al. // Chem. A Europ. J. 2021. V. 27. № 46. P. P. 11811. https://doi.org/10.1002/chem.202101701
- Kuntzsch M., Lamparter D., Bruggener N. et al. // Pharmaceutic. 2014. V. 7. P. 621. https://doi.org/10.3390/ph7050621
- Blevins D.W., Rigney G.H., Fang M.Y. et al. // Nucl. Medic. Biolog. 2019. V. 74–75. P. 41. https://doi.org/10.1016/j.nucmedbio.2019.07.008
- Mauthner G., Scherf U., Emil J.W., List E.J.W. // Appl. Phys. Lett. 2007. V. 91. P. 133501. https://doi.org/10.1063/1.2773756
- Zejli H., Hidalgo-Hidalgo de Cisneros J.L., Naranjo-Rodriguez I. et al. // Anal. Lett. 2007. V. 40. № 14. P. 2788. https://doi.org/10.1080/00032710701577906
- Woodruff A., Pohl C.A., Bordunov A., Avdalovic N. // J. Chromatogr. A 2003. V. 997. № 1–2. P. 33. https://doi.org/10.1016/s0021-9673(03)00550-8
- Vanatta L.E., Woodruff A., Coleman D.E. // J. Chromatogr. A 2005. V. 1085. № 1. P. 33. https://doi.org/10.1016/j.chroma.2005.01.048
- Wang F., Zhang J., Ding X. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 1090. https://doi.org/10.1002/anie.200906389
- Wang Q., Cheng M., Tian L. et al. // Polym. Chem. 2017. V. 8. P. 6058. https://doi.org/10.1039/c7py01096f
- Lenora C.U., Staples R.J., Allen M.J. // Inorg. Chem. 2020. V. 59. № 1. P. 86. https://doi.org/10.1021/acs.inorgchem.8b03605
- Trautnitz M.F.K., Haas T., Schubert H., Seitz M. // Chem. Commun. 2020. V. 56. P. 9874. https://doi.org/10.1039/d0cc04050a
- Gholiee Y., Salehzadeh S. // J. Mol. Liquid. 2020. V. 309. P. 113149. https://doi.org/10.1016/j.molliq.2020.113149
- Vashistha V.K., Kumar A. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 834. https://doi.org/10.1134/s0036023621060218
- Bondarev N.V. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 409. https://doi.org/10.1134/S1070363221030117
- Исаева В.А., Шарнин В.А. // Журн. физ. химии. 2018. Т. 92. № 4. С. 600. https://doi.org/10.7868/S0044453718040131
- Исаева В.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2022. Т. 96. № 5. С. 687. https://doi.org/10.31857/S0044453722050132
- Исаева В.А., Гамов Г.А., Шарнин В.А. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1577. https://doi.org/10.31857/S0044457X2111009X
- Исаева В.А., Кипятков К.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2021. Т. 95. № 5. С. 758. https://doi.org/10.31857/S0044453721050162
- Бургер К. Сольватация, ионные реакции и комплексообразование в неводных средах. М.: Мир, 1984. – 256 с.
- Arnaud-Neu F., Spiess B., Schwing-Weill M. J. // J. Am. Chem. Soc. 1982. V. 104. № 21. P. 5641. https://doi.org/10.1021/ja00385a014
- Spiess B., Arnaud-Neu F., Schwing-Weill M.J. // Helv. Chim. Acta. 1979. V. 62. № 5. P. 1531. https://doi.org/10.1002/hlca.19790620518
- Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- Woollej E.H., Hurkot D.G., Herber L.G. // J. Phys. Chem. 1970. V. 74. № 22. P. 3908. https://doi.org/10.1021/j100716a011
- Buschmann H-J., Cleve E., Schollmeyer E. // J. Coord. Chem. 1997. V. 42. P. 127. https://doi.org/10.1080/00958979708045285
- Amaud-Neu F., Spiess B., Schwing-Weill M. J. // Helv. Chim. Acta. 1977. V. 60. № 8. P. 2633. https://doi.org/10.1002/hlca.19770600815
- Невский А.В., Шорманов В.А., Крестов Г.А. // Коорд. химия. 1989. Т. 5. № 11. С. 1576.
- Михеев С.В., Фадеев Ю.Ю., Шарнин В.А., Шорманов В.А. // Журн. неорган. химии. 1994. Т. 39. № 9. С. 1502.
- Невский А.В., Шорманов В.А., Крестов Г.А. // Коорд. химия. 1983. Т. 9. № 3. С. 391.
- Шарнин В.А. // Журн. общ. химии. 1999. Т. 69. № 9. С. 1421.
- Chanton M.K., Kolthoff I.M. // J. Solut. Shem. 1985. V. 14. № 1. P. 1. https://link.springer.com/article/10.1007/ BF00646725
- Cox B.G., Garsia-Rosas J., Schneider H. // J. Am. Chem. Soc. 1981. V. 103. № 6. P. 1384. https://doi.org/10.1021/ja00396a016
- Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. V. 100. № 3. P. 819. https://doi.org/10.1021/cr980144k
- Чанкина Т.И., Парфенюк Т.И. // Изв. вузов. Химия и хим. технолог. 2009. Т. 52. № 5. С. 21.
- Blandamer M.J., Briggs B., Burgess J. et al. // J. Chem. Soc. Farad. Trans. 1. 1988. V. 84. № 8. P. 2703. https://doi.org/10.1039/F19888402703
- De Ligny C.L., Bax D., Alfenaar M., Elferink M.G.L. // Recl. Trav. Chim. Pays Bas. 1969. V. 88. № 10. P. 1183. https://doi.org/10.1002/recl.19690881005
- Marcus Y. // Chem. Rev. 2007. V. 107. № 9. P. 3880. https://doi.org/10.1021/cr068045r
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


