Influence of surfactant on thermal stability of mechanically synthesized phase of Ti5Si3CX

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Influenceof stearic acid and graphite additives during mechanical alloying oftitanium and silicon in petroleum ether on the structural-phase stateand stability of titanium carbosilicide during annealing up to 1300°Cis studied. Barrier layers on the particles formed inthe presence of surfactants are shown to enhance stability ofcarbosilicide more effectively than graphite does. Surfactant additives promote theformation of additional silicon-containing phase and more efficient sintering ofparticles.

Авторлар туралы

M. Eremina

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: mrere@mail.ru
Izhevsk, 426067 Russia

S. Lomaeva

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mrere@mail.ru
Izhevsk, 426067 Russia

Әдебиет тізімі

  1. Gao N.F., Li J.T., Zhang D., Miyamoto Y. // J. Europ. Ceram. Soc. 2002. V. 22. P. 2365. https://doi.org/10.1016/S0955-2219(02)00021-3
  2. Ghosh N.C. Synthesis and Tribological Characterization of in-situSpark Plasma Sintered Ti3SiC2and Ti3SiC2-TiC Composites.PhD theses. 2012. Oklahoma State University. https://shareok.org/bitstream/handle/11244/9936/Ghosh_okstate_0664M_12424.pdf?sequence=1&isAllowed=y
  3. Chahhou B., Roger J. // Ceram. Int. 2022. V. 48(23A). P. 34635. https://doi.org/10.1016/j.ceramint.2022.08.051
  4. Kero I. Ti3SiC2Synthesis from TiC and Si Powders. PhD theses. 2010. Luleå Universityof Technology. https://doi.org/10.1002/9780470456361.ch3
  5. Sabooni S.,Karimzadeh F., Abbasi M.H. //Bull. Mater. Sci. 2012. V. 35(3). P. 439. https://doi.org/10.1007/s12034-012-0298-2
  6. Thom A.J., Kim Y., Akinc M. // MRS Online Proceedings Library1992. V. 288. P. 1037. https://doi.org/10.1557/PROC-288-1037
  7. Tang Z., Williams J.J.,Thom A.J., Akinc M. // Intermetallics. 2008. V. 16. P. 1118. doi: 10.1016/j.intermet.2008.06.013
  8. Williams J.J., Akinc M. //Oxidation of Metals. 2002. V. 58(1/2). P. 57. https://doi.org/10.1023/A:1016012507682
  9. Katz A.P.,Lipsitt H.A., Mah T., Mendiratta M.G. // J. Mater. Sci. 1983. V. 18. P. 1983. https://doi.org/10.1007/BF00554991
  10. Niu J., Sha J., Yang D. // Physica E. 2004.V. 23. P. 131. doi: 10.1016/j.physe.2004.01.013
  11. PourebrahimA., Baharvandi H., Foratirad H.,Ehsani N. // J. Alloys Compd. 2019. V. 789. P. 313. https://doi.org/10.1016/j.jallcom.2019.03.062
  12. Thom A.J., Akinc M. // Report. 1995. doi: 10.2172/106642 fatcat: bllt7korkjft7ey5uddxjpxse4
  13. Atazadeh N., Heydari M.S., Baharvandi H.R., Ehsani N. // Int. J. Refract. Met. Hard Mater. 2016. V. 61.P. 67. http://dx.doi.org/10.1016/j.ijrmhm.2016.08.003
  14. Kasraee K., Yousefpour M.,Tayebifard S.A. // J. Alloys Compd. 2019. V. 779. P. 942. https://doi.org/10.1016/j.jallcom.2018.11.319
  15. Wang L., JiangW., Qin C., Chen L. // J. Mater. Sci. 2006. V. 41. P. 3831. doi: 10.1007/s10853-005-5159-6
  16. Lihua H., Yiying Y., Huawei G. // Wuhan Univ.J. National Sci. 1998. V. 3(4). P. 433. https://doi.org/10.1007/BF02830045
  17. HongJ., Lee S., Lee S., et al. // Nanoscale. 2014.V. 6. P. 7503. https://doi.org/10.1039/C3NR06771H
  18. Chang C., Yee D.S., Petkie R. // Appl. Phys. Letters 1989. V. 54. P. 2545. doi: 10.1063/1.101045
  19. An B.-S., Kwon Y., Oh J.-S., et al. // ACS Appl.Mater. Interfaces 2020. V. 12. P. 3104. doi: 10.1021/acsami.9b15562
  20. Luong T.K.P., Le Thanh V., Ghrib A., et al. // Phys.Scr. 2019. V. 94. P. 085803. https://doi.org/10.1088/1402-4896/ab182b
  21. Govindarajan S., Moore J.J.,Disam J., Suryanarayana C. // Met. Mater. Trans. A. 1999.V. 30. P. 799. https://doi.org/10.1007/s11661-999-1012-x
  22. Kim I.-S., Shim C.-E., Kim S.W., et al. // Adv. Mater. 2023. V. 35. P. 2204912. doi: 10.1002/adma.202204912
  23. Syugaev A.V., Yazovskikh K.A., Lomayeva S.F., et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects.2021. V. 622. P. 126692. https://doi.org/10.1016/j.colsurfa.2021.126692
  24. Eryomina M.A., Lomayeva S.F. // Adv. Powd. Techn. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  25. Bolokang A.S., Motaung D.E., Arendse C.J., Muller T.F.G. // Adv. Powder Technol. 2015. V. 26. P. 169. http://refhub.elsevier.com/S0921-8831(20)30066-2/h0005
  26. Wan Y.,Sun B., Liu W., Qi C. //J. Sol-Gel. Sci. Technol. 2012. V. 61. P. 558. doi: 10.1007/s10971-011-2659-5
  27. Miragliotta J., Benson R.C., Phillips T.E. // MRS Online ProceedingsLibrary (OPL). 1996. V. 445. P. 217. https://doi.org/10.1557/PROC-445-217
  28. Shelekhov E.V.,Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42.P. 309. https://doi.org/10.1007/BF02471306
  29. Eryomina M.A.,Lomayeva S.F., Demakov S.L. // J. Sol. St. Chem. 2020. V. 290. P. 121575. https://doi.org/10.1016/j.jssc.2020.121575
  30. Eremina M.A., Lomaeva S.F., Burnyshev I.N., et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1274. https://doi.org/10.1134/S0036023618100066
  31. Eryomina M.A., Lomayeva S.F.// Adv. Powd. Technol. 2020. V. 31.P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  32. Yan Z.H., Oehring M., Bormann R. // J. Appl. Phys. 1992. V. 72(6). P. 2478. https://doi.org/10.1063/1.351594
  33. Sokolova E.I.,Martirosyan N.A., Nersesyan M.D. // Russ. J. Inorg. Chem. 1981.V. 26(7). P. 1949. http://refhub.elsevier.com/S0921-8831(20)30066-2/h0055
  34. Ngai T.L., Kuang Y., Li Y. // Ceram. Int. 2012. V. 38.P. 463. https://doi.org/10.1016/j.ceramint.2011.07.028
  35. RadhakrishnanR., Bhaduri S.B., Henager C.H. // 1995 International Conference andExhibition on Powder Metallurgy and Particulate Materials At: Seattle, WAVolume: 3, pages 13/129–13/137.
  36. Zueva L.V., Gusev A.I. // Physicsof the Solid State. 1999. V. 41(7). P. 1134. (in Russ.).
  37. Turchanin A.G., Turchanin M.A. Thermodynamics of Refractory Carbides. M.: Metallurgy,1991. 352 p. (in Russ.)
  38. Cao Z., Xie W., Jung I., Du G., Qiao Z. Critical Evaluation and Thermodynamic Optimizationof the Ti-C-O System and its Applications to Carbothermic TiO2Reduction Process // Met. Mater. Transact. B. 2015. V.46. P. 1782. doi: 10.1007/s11663-015-0344-8
  39. Zhilyaev V.A., Patrakov E.I. // Powder Metallurgy and Functional Coatings2014. № 3. P. 49. (in Russ.) https://doi.org/10.17073/1997-308X-2014-3-49-54
  40. Alyamovsky S.I.,Zainulin Yu.G., Shveikin G.P. Oxycarbides and Oxynitrides of Metals IVAand VA Subgroups. M.: Nauka, 1981. 144 p. (in Russ.)
  41. Williams J.J. Structure and High-Temperature Properties of Ti5Si3withInterstitial Additions // Retrospective Theses and Dissertations. 1999. 12494. https://lib.dr.iastate.edu/rtd/12494
  42. Williams J.J., Ye Y.Y., Kramer M.J., et al. // Intermetallics.2000. V. 8. P. 937.
  43. Thom A.J., Young V.G., Akinc M. // J. Alloys Compd. 2000. V. 296.P. 59. https://doi.org/10.1016/S0925-8388(99)00533-2
  44. Xiong Y., WangW., Ye Z., et al. //J. Europ. Ceram. Soc. 2023. V. 43(9). P. 3988. https://doi.org/10.1016/j.jeurceramsoc.2023.03.030

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025