Influence of the inductive effect on the protolytic properties of some aliphatic amino acids

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The protolytic propertiesof a number of aliphatic amino acids, viz. serine (Ser),cysteine (Cys), glycine (Gly), alanine (Ala), valine (Val), leucine (Leu),and isoleucine (Ile) in aqueous solutions atT = 298.2 K andI = 0.1 mol/L NaNO3are studiedby pH monitoring. Using the calculated ionization constants of aminoacids and the equation allowing one to quantify the inductiveeffect in the aliphatic series (the Taft equation), the substituentconstantσ*is calculated, with its values showing a positivecorrelation with the ionization constants of amino acids (рKi) (R2= 0.9561 andR2= 0.8542). Theresults show that the acidity of the studied amino acidsdecreases as follows Cys > Ser > Gly > Gly> Leu > Ala > Ile > Val. The acid-baseproperties of amino acids are found to change depending onthe inductive effect (the radical constantσ*). Among thestudied amino acids, Cys exhibits the highest acidity and isconsidered to be the weakest base.

Авторлар туралы

A. Samadov

Tajik National University

Email: s.rasul@mail.ru
Dushanbe, 734025 Tajikistan

Dzh. Khakimov

Tajik National University

Email: s.rasul@mail.ru
Dushanbe, 734025 Tajikistan

A. Stepnova

Peoples’ Friendship University of Russia

Email: s.rasul@mail.ru
Moscow, 117198 Russia

E. Faizullozoda

Tajik National University

Email: s.rasul@mail.ru
Dushanbe, 734025 Tajikistan

A. Kuzin

Moscow Pedagogical State University

Хат алмасуға жауапты Автор.
Email: s.rasul@mail.ru
Moscow, 129164 Russia

Әдебиет тізімі

  1. Akram M., Asif H.M.,Uzair M., et al. // J. of Medicinal PlantsResearch. 2011. V. 5. № 17. P. 3997.
  2. ValdemirL., Zélia M. da CostaL., Danillo V.,et al. // J. of Molecular Liquids. 2020. P. 319. https://doi.org/10.1016/j.molliq.2020.114109
  3. Rand R.P. // Philos. Trans. R. Soc.Lond. Ser. B Biol. Sci. 2004. V. 359. P. 1277. https://doi.org/10.1098/rstb.2004.1504
  4. Adam C.L.,Gordon M.C. // J. Chem.Inf. Model. 2009. V. 49. P. 2013.
  5. Makowska J., Baginska K., Liwo A.,et al. // Peptide Science. 2008. V. 90. № 5. https://doi.org/10.1002/bip.21046
  6. Somaryn M.S., Gharib F. //J. of Applied Chemical Research. 2014. V. 8. № 3. P. 17.
  7. Subirats X.E., Rosés F.M., Bosch E., etal. // Molecular Sciences and Chemical Engineering, Elsevier 2015. https://doi.org/10.1016/B978-0-12-409547-2.11559-8
  8. Зеленин О.Ю.,Кочергина Л.А. // Журн. общ. химии. 2004. Т. 74. № 2. С. 230–234.
  9. Bretti C., Giuffrè O., Lando G., et al. // SpringerPlus. 2016. 5:928. https://doi.org/10.1186/s40064-016-2568-8
  10. Seza BastugA., Seda Goz E., TalmanY., et al. // J. of Coordination Chemistry. 2011. V. 64. № 2. P. 281. http://dx.doi.org/10.1080/00958972.2010.541454
  11. Clarke R.G.F.,Collins C.M., Roberts J.C., et al. // GeochimicaetCosmochimica Acta. 2004. V. 69. № 12. P. 3029. https://doi.org/10.1016/j.gca.2004.11.028
  12. Вандышев В.Н.,Леденков С.Ф. // Журн. физ. химии. 2009. Т. 83. № 12. С. 2384.
  13. Chernyshova О.S., Boichenko A.P.,Abdulrahman H., et al. // J. of MolecularLiquids. 2013. Р. 182. http://dx.doi.org/10.1016/j.molliq.2013.03.003
  14. Sharma V.K., CasteranF., Millero F.J., et al. // J. of Solution Chemistry. 2002. V.31. № 10. P. 783. https://doi.org/10.1023/a:1021389125799
  15. Zhu M., Yang D., Ye R., et al. // Catal.Sci. Technol. 2019. https://doi.org/10.1039/C9CY00102F.
  16. Chowdhury S., Mandal P., Hossain A., et al. // J. Chem. Eng. Data. 2019.V. 64. № 10. P. 4286. https://doi.org/10.1021/acs.jced.9b00363
  17. Glinskia J., Chavepeyerb G., Platten J. // Biophysical Chemistry 2000. V. 84. P. 99. https://doi.org/10.1016/S0301-4622(99)00150-7
  18. Горичев И.Г., Атанасян Т.К., Мирзоян П.И.Расчет констант кислотно-основныхсвойств наночастиц оксидных суспензий с помощью программ Mathсad.Учебное пособие. Москва. 2014. 57 с.
  19. Arcis H., Ferguson J.P., Cox J.S., et al. // Cite as: J. Phys. Chem. Ref. 2020. V. 49. https://doi.org/10.1063/1.5127662
  20. Кобилова Н.Х., Бобилова Ч.Х., Жабборова Д.Р. // Международный академическийвестник. 2019. № 1 (33). С. 89.
  21. Самадов А.С., Хакимов Дж.Н., Степнова А.Ф. // Журн. физ. химии.2023. Т. 97. № 4. С. 512. https://doi.org/10.31857/S004445372304026X
  22. Самадов А.С., Миронов И.В.,. Горичев И.Г. и др. // Журн.общ. химии. 2020. Т. 90. № 11. С. 1738. doi: 10.31857/S0044460X20110141
  23. Самадов А.С., Степнова А.Ф., Файзуллозода Э.Ф. и др. // Вecтн.Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 3.
  24. Kochergina L.A.,Volkov A.V., Khokhlova E.A., et al. // Rus. J. of PhysicalChemistry. 2011. V. 85. № 5. P. 970.
  25. Martell A.E., Smith R.M. Aminocarboxylic Acids. Critical Stability Constants.1982. P. 1. https://doi.org/10.1007/978-1-4615-6761-5_1
  26. Zelenin O. Yu., Kochergina L.A. // Russian Journalof general chemistry. 2004. V. 74. № 2. P. 259
  27. Sovago I., KissT., Gergely A. // Pure & App. Chem. 1993. V.65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029.
  28. Berthon G. // Pure & App. Chem. 1995. V. 67. № 7. P. 1117. https://doi.org/10.1351/pac199567071117
  29. Popoca J.L., Thoke H.S., Stock R.P., et al. // Biochemistryand Biophysics Reports. 2020. V. 24. № 100802. https://doi.org/10.1016/j.bbrep.2020.100802
  30. Cherkasov A.R., Galkin V.I., Cherkasov R.A. // Rus. Chemical Reviews. 1996. V. 65. № 8. P. 641. https://doi.org/10.1070/RC1996v065n08ABEH000227
  31. Kingsbury C.A. // Faculty Publications Chemistry Department. 2019. № 155. http://digitalcommons.unl.edu/chemfacpub/155
  32. Widing H.F., Levitt L.S. // Z. Naturforsch. 1979. V. 34b. P. 321. https://doi.org/10.1515/znb-1979-0236.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025