Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene
- Autores: Kislenko V.A.1,2, Pavlov S.V.2, Kislenko S.A.2
- 
							Afiliações: 
							- Skolkovo Institute of Science and Technology
- Joint Institute for High Temperatures, Russian Academy of Sciences
 
- Edição: Volume 97, Nº 11 (2023)
- Páginas: 1547-1555
- Seção: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.11.2023
- URL: https://rjeid.com/0044-4537/article/view/669156
- DOI: https://doi.org/10.31857/S0044453723110158
- EDN: https://elibrary.ru/VLDXBV
- ID: 669156
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
DFT modeling is used to calculate the free energy profiles of oxygen reduction in acidic and alkaline media on surfaces of nitrogen-doped graphene rather than defect-free graphene. Both four- and two-electron mechanisms of associative reaction are considered. Calculations are made in the grand canonical ensemble at a fixed electrode potential. It is shown that calculations at a fixed potential differ considerably from ones generally accepted at a fixed surface charge. It is found that the electrocatalytic effect of the nitrogen impurity is associated with an increase in the OOH intermediate’s energy of chemisorption that reduces the energy of the oxygen molecule’s protonation reaction. It is also shown that a nitrogen impurity inhibits the two-electron reaction mechanism in an alkaline medium.
Palavras-chave
Sobre autores
V. Kislenko
Skolkovo Institute of Science and Technology; Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: kislenko@ihed.ras.ru
				                					                																			                												                								121205, Moscow, Russia; 125412, Moscow, Russia						
S. Pavlov
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: kislenko@ihed.ras.ru
				                					                																			                												                								125412, Moscow, Russia						
S. Kislenko
Joint Institute for High Temperatures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kislenko@ihed.ras.ru
				                					                																			                												                								125412, Moscow, Russia						
Bibliografia
- Ferriday T.B., Middleton P.H. // Int. J. Hydrogen Energy. 2021. V. 46. № 35. P. 18489.
- Ma R., Lin G., Zhou Y. et al. // npj Comput. Mater. 2019. V. 5. № 1. P. 78.
- Zhang L., Lin C., Zhang D. et al. // Adv. Mater. 2019. V. 31. № 13. P. 1805252.
- Wang B., Liu B., Dai L. // Adv. Sustain. Syst. 2021. V. 5. № 1. P. 2000134.
- Jia Y., Zhang L., Zhuang L. et al. // Nat. Catal. 2019. V. 2. № 8. P. 688.
- Begum H., Ahmed M.S., Kim Y.-B. // Sci. Rep. 2020. V. 10. № 1. P. 12431.
- Tabassum H., Zou R., Mahmood A. et al. // J. Mater. Chem. A. 2016. V. 4. № 42. P. 16469.
- Lai L., Potts J., Zhan D. et al. // Energy Environ. Sci. 2012. V. 5. № 7. P. 7936.
- Wan K., Yu Z.-P., Li X.-H. et al. // ACS Catal. 2015. V. 5. № 7. P. 4325.
- Rauf M., Zhao Y.-D., Wang Y.-C. et al. // Electrochem. commun. 2016. V. 73. P. 71.
- Yang H., Miao J., Hung S.-F. et al. // Sci. Adv. 2016. V. 2. № 4. P. e1501122.
- Kim I.T., Song M., Kim Y. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 47. P. 22026.
- Guo D., Shibuya R., Akiba C. et al. // Science. 2016. V. 351. № 6271. P. 361.
- Okamoto Y. // Appl. Surf. Sci. 2009. V. 256. № 1. P. 335.
- Ikeda T., Boero M., Huang S.-F. et al. // J. Phys. Chem. C. 2008. V. 112. № 38. P. 14706.
- Zhang L., Xia Z. // Ibid. 2011. V. 115. № 22. P. 11170.
- Wan X., Shui J. // Sci. Adv. 2022. V. 1. № 1. P. e1400129.
- Nørskov J.K., Rossmeisl J., Logadottir A. et al. // J. Phys. Chem. B. 2004. V. 108. № 46. P. 17886.
- Yu L., Pan X., Cao X. et al. // J. Catal. 2011. V. 282. № 1. P. 183.
- Oberhofer H. Handbook of Materials Modeling. Methods: Theory and Modeling. Cham: Springer International Publishing, 2018. 1987 p.
- Sundararaman R., Goddard W.A., Arias T.A. // J. Chem. Phys. 2017. V. 146. № 11. P. 114104.
- Kim D., Shi J., Liu Y. // J. Am. Chem. Soc. 2018. V. 140. № 29. P. 9127.
- Kislenko V.A., Pavlov S.V., Kislenko S.A. // Electrochim. Acta. 2020. V. 341. P. 136011.
- Pavlov S.V., Kislenko V.A., Kislenko S.A. // J. Phys. Chem. C. 2020. V. 124. № 33. P. 18147–18155.
- Gao G., Wang L.-W. // J. Catal. 2020. V. 391. P. 530.
- Sundararaman R., Letchworth-Weaver K., Schwarz K. et al. // SoftwareX. 2017. V. 6. P. 278.
- Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104.
- Garrity K.F., Bennett J.W., Rabe K.M. et al. // Comput. Mater. Sci. 2014. V. 81. P. 446.
- Kakaei K., Esrafili M.D., Ehsani A. Chapter 6 – Oxygen Reduction Reaction // Graphene Surfaces / ed. Kakaei K., Esrafili M.D., Ehsani A. Elsevier, 2019. V. 27. P. 203–252.
- Yan H.J., Xu B., Shi S.Q., Ouyang C.Y. // J. Appl. Phys. 2012. V. 112. № 10. P. 104316.
- Gunceler D., Letchworth-Weaver K., Sundararaman R. et al. // Model. Simul. Mater. Sci. Eng. 2013. V. 21. № 7. P. 74005.
- Ashcroft N., Mermin D. Solid State Physics. Cengage Learning, 1976. 848 p.
- Sorescu D.C., Jordan K.D., Avouris P. // J. Phys. Chem. B. 2001. V. 105, № 45. P. 11227.
- Heller I., Kong J., Williams K.A. et al. // J. Am. Chem. Soc. 2006. V. 128. № 22. P. 7353.
- Savin G.I., Shabanov B.M., Telegin P.N., Baranov A.V. // Lobachevskii J. Math. 2019. V. 40. № 11. P. 1853.
- Zacharov I., Arslanov R., Gunin M. et al. // Open Eng. 2019. V. 9. № 1. P. 512.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






