An Optical Analog for a Rotating Binary Bose—Einstein Condensate
- Autores: Ruban V.P.1
- 
							Afiliações: 
							- Landau Institute of Theoretical Physics, Russian Academy of Sciences
 
- Edição: Volume 164, Nº 5 (2023)
- Páginas: 863-869
- Seção: Articles
- URL: https://rjeid.com/0044-4510/article/view/653627
- DOI: https://doi.org/10.31857/S0044451023110160
- EDN: https://elibrary.ru/PKISHU
- ID: 653627
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Coupled nonlinear Schrödinger equations for paraxial optics with two circular polarizations of light in a defocusing Kerr medium with anomalous dispersion coincide in form with the Gross–Pitaevskii equations for a binary Bose—Einstein condensate (BEC) of cold atoms in the phase separation regime. In this case, the helical symmetry of an optical waveguide corresponds to rotation of the transverse potential confining the BEC. The “centrifugal force” considerably affects the propagation of a light wave in such a system. Numerical experiments for a waveguide with an elliptical cross section have revealed characteristic structures consisting of quantized vortices and domain walls between two polarizations, which have not been observed earlier in optics.
Sobre autores
V. Ruban
Landau Institute of Theoretical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ruban@itp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
Bibliografia
- Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
- V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
- B. A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N. Y. (2022), https://doi.org/10.1063/9780735425118
- F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).
- P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonz'alez, The Defocusing Nonlinear Schr¨odinger Equation: From Dark Solitons to Vortices and Vortex Rings, SIAM, Philadelphia (2015).
- А. Л. Берхоер, В. Е. Захаров, ЖЭТФ 58, 903 (1970).
- Tin-Lun Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).
- H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
- B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
- S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
- G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
- E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
- P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).
- M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 3389 (1994).
- M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 4512 (1994).
- A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
- Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
- N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
- A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
- A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Progr. Opt. 47, 291 (2005).
- В. П. Рубан, Письма в ЖЭТФ 117, 292 (2023).
- В. П. Рубан, Письма в ЖЭТФ 117, 590 (2023).
- B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
- K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
- H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
- N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
- H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
- K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
- S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
- T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
- K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
- D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
- D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).
- K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
- K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
- P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).
- K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
- В. П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
- В. П. Рубан, ЖЭТФ 160, 912 (2021).
- K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)
- Erratum, Phys. Rev. Lett. 106, 199903 (2011).
- M. Pola, J. Stockhofe, P. Schmelcher, and P. G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).
- S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
- G. C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).
- A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).
- A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).
- В. П. Рубан, Письма в ЖЭТФ 113, 539 (2021).
- В. П. Рубан, Письма в ЖЭТФ 115, 450 (2022).
- V. P.Ruban, W. Wang, C. Ticknor, and P. G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
- X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).
- X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
