Hall Effect in Magnetic Tunnel Junctions
- Autores: Karashtin E.A1, Gusev N.S1,2, Pashen'kin I.Y.1, Sapozhnikov M.V1,2, Fraerman A.A1
- 
							Afiliações: 
							- Institute for Physics of Microstructures, Russian Academy of Sciences
- Lobachevsky Nizhny Novgorod State University
 
- Edição: Volume 163, Nº 1 (2023)
- Páginas: 5-13
- Seção: Articles
- URL: https://rjeid.com/0044-4510/article/view/653571
- DOI: https://doi.org/10.31857/S0044451023010017
- EDN: https://elibrary.ru/NMMWGO
- ID: 653571
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We have constructed a theory of the Hall effect appearing during the passage of current in a magnetic tunnel junction due to the spin–orbit interaction in an insulator barrier in the approximation of a delta-shaped barrier potential. Both the normal Hall current flowing in metal banks as a result of asymmetric scattering in the tunneling barrier and the anomalous current existing only in the tunneling barrier due to the presence of the spin–orbit interaction in it are taken into account. We have considered the Rashba interaction that can be of intrinsic origin (noncentrosymmetric form of the barrier) or can be induced by an extraneous electric field emerging as a result of application of a potential difference to the barrier. Such a field can reach a value on the order of 109 W/m, which is close to intrinsic atomic fields. The Hall current has both linear and quadratic components in the voltage applied to the tunnel junction. The existence of the nonlinear Hall voltage corresponding to it has been illustrated experimentally in a CoFeB/MgO/Pt tunnel junction, in which the transverse (Hall) voltage has been measured in the Pt layer.
Sobre autores
E. Karashtin
Institute for Physics of Microstructures, Russian Academy of Sciences
														Email: eugenk@ipmras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
N. Gusev
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia						
I. Pashen'kin
Institute for Physics of Microstructures, Russian Academy of Sciences
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
M. Sapozhnikov
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia						
A. Fraerman
Institute for Physics of Microstructures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: jetp@kapitza.ras.ru
				                					                																			                												                								603950, Nizhny Novgorod, Russia						
Bibliografia
- N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
- J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
- S. A. Tarasenko, V. I. Perel′, and I. N. Yassievich, Phys. Rev. Lett. 93, 056601 (2004).
- A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).
- A. Vedyaev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).
- A. Vedyaev, N. Ryzhanova, N. Strelkov, M. Titova, M. Chshiev, B. Rodmacq, S. Au ret, L. Cuchet, L. Nistor, and B. Dieny, Phys. Rev. B 95, 064420 (2017).
- A. V. Vedyaev, M. S. Titova, N. V. Ryzhanova, M. Ye. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).
- С. В. Вонсовский, Магнетизм, Наука, Москва (1971).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, Москва (1989).
- A. M. Kriman, N. C. Kluksdahl, and D. K. Ferry, Phys. Rev. B 36, 5953 (1987).
- Е. А. Караштин, ФТТ 64, 1311 (2022).
- И. Ю. Пашенькин, М. В. Сапожников, Н. С. Гусев, В. В. Рогов, Д. А. Татарский, А. А. Фраерман, ЖТФ 89, 1732 (2019).
- E. A. Karashtin, J. Magn. Magn. Mater. 552, 169193 (2022).
- N. S. Gusev, A. V. Sadovnikov, S. A. Nikitov, M. V. Sapozhnikov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).
- A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 060404(R) (2002).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
