CAVITY QED WITH DEGENERATE ATOMIC LEVELS AND POLARIZATION-DEGENERATE FIELD MODE
- Authors: Reshetov V.A1
- 
							Affiliations: 
							- Department of General and Theoretical Physics, Tolyatti State University
 
- Issue: Vol 168, No 3 (2025)
- Pages: 331-342
- Section: ATOMS, MOLECULES, OPTICS
- URL: https://rjeid.com/0044-4510/article/view/692038
- DOI: https://doi.org/10.7868/S3034641X25090062
- ID: 692038
Cite item
Abstract
The Jaynes – Cummings model with degenerate atomic levels and polarization-degenerate field mode is considered. The general expression for the system evolution operator is derived. The analytical expressions for such operators in the case of low values (J ≤3/2) of atomic angular momentum are obtained. The polarization properties of the photon emitted into the cavity by an excited atom are studied with an account of relaxation processes for arbitrary angular momenta of atomic levels.
			                About the authors
V. A Reshetov
Department of General and Theoretical Physics, Tolyatti State University
														Email: vareshetov@tltsu.ru
				                					                																			                												                								Tolyatti, Russia						
References
- E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
- J. Larson, and T. Mavrogordatos, The Jaynes – Cummings Model and Its Descendants, IOP Publishing, Bristol (2021).
- M. Scully and M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).
- S. Haroche and J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford University Press, Oxford (2006).
- P. Meystre, Quantum Optics. Taming the Quantum, Springer, Cham (2021).
- J.-M. Raimond, M. Brune, and S. Haroche, Rev.Mod.Phys. 73, 565 (2001).
- H. Walther, B. Varcoe, B.-G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).
- A. Kuhn, and D. Ljunggren, Contemp.Phys. 51, 289 (2010).
- A. Reiserer, and G. Rempe, Rev.Mod.Phys. 87, 1379 (2015).
- D. Meshede, H. Walther, and G. Muller, Phys. Rev. Lett. 54, 51 (1985).
- B.-G. Englert, M. Löffler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, Fortschrit. Phys. 46, 897 (1998).
- B. Varcoe, S. Brattke, and H. Walther, J.Opt.B:Quantum Semiclassical Opt. 2, 154 (2000).
- S. Brattke, B. Varcoe, and H. Walther, Phys. Rev. Lett. 86, 3534 (2001).
- M. Jones, G. Wilkes, and B. Varcoe, J. Phys. B 42, 145501 (2009).
- M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).
- A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
- T. Wilk, S. Webster, H. Specht, G. Rempe, and A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
- T. Wilk, S. Webster, A. Kuhn, and G. Rempe, Science 317, 488 (2007).
- H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S.Ritter, and G. Rempe, Nature 473, 190 (2011).
- S. Ritter, C. Noölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke1, E. Figueroa, J. Bochmann, and G. Rempe, Nature, 484, 195 (2012).
- T. Barrett, O. Barter, D. Stuart, B. Yuen, and A. Kuhn, Phys. Rev. Lett. 122, 083602 (2019).
- G. Chiarella, T. Frank, P. Farrera, and G. Rempe, Optica Quantum 2, 346 (2024).
- V. Reshetov and I. Yevseyev, Laser Phys. 10, 916 (2000).
- V. Reshetov and I. Yevseyev, Laser Phys. Lett. 1, 124 (2004).
- V. Reshetov, E. Popov, and I. Yevseyev, Laser Phys.Lett. 7, 218 (2010).
- V. Reshetov, Opt. Commun. 285, 4457 (2012).
- V. Reshetov and E. Popov, J. Phys. B 45, 225502 (2012).
- V. Reshetov, Laser Phys. Lett. 16, 046001 (2019).
- V. Reshetov, Laser Phys. Lett. 17, 026001 (2020).
- V. Reshetov, Laser Phys. 30, 086001 (2020).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					