Peculiarities of early ontogeny of dwarf forms of Arctic charr Salvelinus alpinus complex (Salmonidae) from Lakes Tokko and Bol’shoe Leprindo (Transbaikalia). 2. Reciprocal hybrids

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Growth, peculiarities and anomalies of the ossification and development of skeletal elements, as well as body proportions and meristic characters of laboratory-reared larvae and fry of two lacustrine dwarf forms of Arctic charr Salvelinus alpinus complex from lakes Tokko and Bol’shoe Leprindo (Transbaikalia) were studied. Retardations of the formation of blood cells, anomalies of morpho- and osteogenesis, and increased mortality of unhatched embryos, free embryos and prelarvae of reciprocal hybrids were revealed. Initial characteristics of prelarvae, linear growth, rate of osteogenesis, body proportions, and colouration of hybrid individuals matched matroclinal developmental pattern. Heterochrony of the ossification of vertebral centra was revealed in prelarvae of the hybrid between females from Lake Tokko and males of the deep-water form from Lake Bol’shoe Leprindo. Their ossification was displaced to an earlier stage in the typical ossification and differentiation sequence of skull bones and fin rays, which indicates the presence of respective regulator in parental genome. Such effect was not observed in reciprocal hybrid; however, it demonstrated earlier ossification of predorsalia than the pure form from Lake Bol’shoe Leprindo. The formation of morphological features in the ontogeny of hybrid larvae and juveniles as compared with parental forms was traced. All lethal anomalies of reciprocal hybrids and non-lethal anomalies influencing their viability as well as accelerated use of yolk by hybrids between the females from Lake Bol’shoe Leprindo and males from Lake Tokko, which resulted in mass mortality of prelarvae and weak development of the skeleton of early larvae are considered as the elements of post-zygotic reproductive isolation between pure forms of gen. Salvelinus from the two lakes. This isolation is obviously incomplete since part of hybrid individuals developed normally, though their fertility remains unknown.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Pichugin

Lomonosov Moscow State University; Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mp_icht@mail.ru
Ресей, Moscow; Moscow

N. Korostelev

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: mp_icht@mail.ru
Ресей, Moscow

S. Alekseyev

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: mp_icht@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Алексеев С.С., Гордеева Н.В., Матвеев А.Н. и др. 2014. Три симпатрические формы арктического гольца Salvelinus alpinus (L.) complex (Salmoniformes, Salmonidae) из озера Камканда, Северное Забайкалье // Вопр. ихтиологии. Т. 54. № 4. С. 387–412. https://doi.org/10.7868/S0042875214040018
  2. Алексеев С.С., Пичугин М.Ю., Гордеева Н.В. и др. 2019. Репродуктивные стратегии и происхождение парапатрических и симпатрических форм арктического гольца Salvelinus alpinus (Salmonidae) в системе озёр Большое и Малое Леприндо (Северное Забайкалье) // Там же. Т. 59. № 4. С. 430–447. https://doi.org/10.1134/S0042875219040015
  3. Алексеев С.С., Самусенок В.П., Юрьев А.Л. и др. 2021. Морфологическая и экологическая дифференциация симпатрических форм арктического гольца Salvelinus alpinus (Salmonidae) в озере Токко (Северное Забайкалье) // Там же. Т. 61. № 1. С. 65–87. https://doi.org/10.31857/S0042875221010021
  4. Гилберт С. 1994. Биология развития. Т. 2. М.: Мир, 235 с.
  5. Медников Б.М. 1987. Проблема видообразования и адаптивные нормы // Журн. общ. биологии. Т. 48. № 1. С. 15–26.
  6. Павлов Д.А. 2007. Морфологическая изменчивость в раннем онтогенезе костистых рыб. М.: ГЕОС, 264 с.
  7. Пичугин М.Ю. 2001. О темпе и особенностях раннего развития карликового гольца р. Salvelinus оз. Гольцовое (бассейн р. Чары, Забайкалье) // Тр. каф. зоологии позвоночных ИГУ. Т. 1. С. 91–97.
  8. Пичугин М.Ю. 2009а. Развитие искусственного гибрида и выявление элементов репродуктивной изоляции между симпатрическими формами гольца Дрягина и пучеглазки Salvelinus alpinus complex (Salmonidae) из горного озера Собачье (Таймыр) // Вопр. ихтиологии. Т. 49. № 2. С. 240–253.
  9. Пичугин М.Ю. 2009б. Развитие элементов скелета у молоди карликовой и мелкой симпатрических форм Salvelinus alpinus complex из оз. Даватчан (Забайкалье) // Там же. Т. 49. № 6. С. 763–780.
  10. Пичугин М.Ю. 2015. Особенности роста и развития скелета ранней молоди северной мальмы Salvelinus malma malma из рек Западной Камчатки в связи с температурным режимом нерестилищ // Там же. Т. 55. № 4. C. 435–452. https://doi.org/10.7868/S0042875215040128.
  11. Пичугин М.Ю., Чеботарева Ю.В. 2011. Особенности личиночного периода развития холодноводной озёрно-речной формы гольца Дрягина (род Salvelinus) из озера Лама (п-ов Таймыр) // Там же. Т. 51. № 2. C. 260–274.
  12. Пичугин М.Ю., Коростелёв Н.Б., Алексеев С.С. 2023. Особенности раннего онтогенеза карликовых форм арктического гольца Salvelinus alpinus complex (Salmonidae) из озёр Токко и Большое Леприндо (Забайкалье). 1. Чистые формы // Там же. Т. 63. № 6. С. 675–703. https://doi.org/10.31857/S004287522306019X
  13. Смирнов А.И. 1975. Биология, размножение и развитие тихоокеанских лососей. М.: Изд-во МГУ, 336 с.
  14. Ahi E.P., Kapralova K.H., Pálsson A. et al. 2014. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr // EvoDevo. V. 5. № 1. Article 40. https://doi.org/10.1186/2041-9139-5-40
  15. Alekseyev S.S., Samusenok V.P., Matveev A.N., Pichugin M. Yu. 2002. Diversification, sympatric speciation, and trophic polymorphism of Arctic charr, Salvelinus alpinus complex, in Transbaikalia // Environ. Biol. Fish. V. 64. № 1–3. P. 97–114. https://doi.org/10.1023/A:1016050018875
  16. Alekseyev S.S., Bajno R., Gordeeva N.V. et al. 2009. Phylogeography and sympatric differentiation of the Arctic charr Salvelinus alpinus (L.) complex in Siberia as revealed by mtDNA sequence analysis // J. Fish Biol. V. 75. № 2. P. 368–392. https://doi.org/10.1111/j.1095-8649.2009.02331.x
  17. Beck S.V., Räsänen K, Ahi E.P. et al. 2018. Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): a focus on growth and ossification at early stages of development // Evol. Dev. V. 21. № 1. P. 16–30. https://doi.org/10.1111/ede.12275
  18. Gordeeva N.V., Alekseyev S.S., Matveev A.N., Samusenok V.P. 2015. Parallel evolutionary divergence in Arctic charr Salvelinus alpinus (L.) complex from Transbaikalia: variation in differentiation degree and segregation of genetic diversity among sympatric forms // Can. J. Fish. Aquat. Sci. V. 72. № 1. P. 96–115. https://doi.org/10.1139/cjfas-2014-0014
  19. Eiríksson G.M., Skúlason S., Snorrason S.S. 1999. Heterochrony in skeletal development and body size in progeny of two morphs of Arctic charr from Thingvallavatn, Iceland // J. Fish Biol. V. 55. № sA. P. 175–185. https://doi.org/10.1111/j.1095-8649.1999.tb01054.x
  20. Horta-Lacueva Q.J.-B., Jónsson Z.O., Thorholludottir D.A.V. et al. 2023. Rapid and biased evolution of canalization during adaptive divergence revealed by dominance in gene expression variability during Arctic charr early development // Commun. Biol. V. 6. № 1. Article 897. https://doi.org/10.1038/s42003-023-05264-5
  21. Jacobs A., Carruthers M., Yurchenko A. et al. 2020. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish // PLoS Genetics. V. 16. № 4. Article e1008658. https://doi.org/10.1371/journal.pgen.1008658
  22. Kapralova K.H. 2014. Study of morphogenesis and miRNA expression associated with craniofacial diversity in Arctic charr (Salvelinus alpinus) morphs: PhD Thesis. Reykjavík: Univ. Iceland, 189 p.
  23. Korwin-Kossakowski M. 2012. Fish hatching strategies: a review // Rev. Fish Biol. Fish. V. 22. № 1. P. 225–240. https://doi.org/10.1007/s11160-011-9233-7
  24. Norden C.R. 1961. Comparative osteology of representative salmonid fishes, with particular reference to the grayling (Thymallus arcticus) and its phylogeny // J. Fish. Res. Board Can. V. 18. № 5. P. 679–791. https://doi.org/10.1139/f61-052
  25. Østbye, K., Hassve M.H., Peris Tamayo A.-M. et al. 2020. “And if you gaze long into an abyss, the abyss gazes also into thee”: four morphs of Arctic charr adapting to a depth gradient in Lake Tinnsjøen // Evol. Appl. V. 13. № 6. P. 1240–1261. https://doi.org/10.1111/eva.12983
  26. Reist J.D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data // Can. J. Zool. V. 63. № 6. P. 1429–1439. https://doi.org/10.1139/z85-213
  27. Rounsefell G.A. 1962. Relationship among North American Salmonidae // Fish. Bull. V. 62. P. 235–269.
  28. Søreide F., Dolmen D., Hindar K. 2006. Den mystiske dypvannsfisken i Tinnsjøen // Fauna. V. 59. P. 122–129.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Producers (mature males) of dwarf lake forms of arctic char Salvelinus alpinus complex from lakes: a – Tokko, b – Bolshoe Leprindo.

Жүктеу (436KB)
3. Fig. 2. Coloration of late larvae (a) and fry (b) of hybrids of females of the dwarf form of Arctic char Salvelinus alpinus complex from Lake Tokko and males of the dwarf form from Lake Bolshoe Leprindo from the 2016 experiment.

Жүктеу (100KB)
4. Fig. 3. The degree of development of skeletal elements and the state of the yolk sac in hybrids of females of the dwarf form of the Arctic char Salvelinus alpinus complex from Lake Tokko and males of the dwarf form from Lake Bolshoe Leprindo at the age of 38 (a) and 59 days (b).

Жүктеу (161KB)
5. Fig. 4. The tail section of hybrids of females of the dwarf form of the Arctic char Salvelinus alpinus complex from Lake Tokko and males of the dwarf form from Lake Bolshoe Leprindo with rudiments of three (a) and four (b) urostylar vertebrae: U3, U4 – rudiments of the 3rd and 4th urostylar vertebrae, respectively.

Жүктеу (252KB)
6. Fig. 5. Light (a) and dark (b) morphs of two-year-olds (1+) of hybrids of females of the dwarf form of Arctic char Salvelinus alpinus complex from Lake Tokko and males of the dwarf form from Lake Bolshoe Leprindo.

Жүктеу (104KB)
7. Fig. 6. Coloration of two-year-olds (age 732 days after hatching) of hybrids of females of the dwarf form of the Arctic char Salvelinus alpinus complex from Lake Tokko and males of the dwarf form from Lake Bolshoe Leprindo: a – male FL 63 mm, gonadal maturity stage II–III; b, c – juvenile males FL 60 and 62 mm.

Жүктеу (401KB)
8. Fig. 7. Increased distance between the rudiments of the vertebral bodies of the tail section in a hybrid of a female of the dwarf form of the Arctic char Salvelinus alpinus complex from Lake Tokko and a male of the dwarf form from Lake Bolshoe Leprindo.

Жүктеу (141KB)
9. Fig. 8. Rudiments of the bodies of the trunk (vert. a21–23) and urostylar (U1, U2) vertebrae in a hybrid between a female of the dwarf form of the Arctic char Salvelinus alpinus complex from Lake Bolshoe Leprindo and a male of the dwarf form from Lake Tokko.

Жүктеу (272KB)
10. Fig. 9. Variants of the lifetime coloration of two-year-old (1+) hybrids of dwarf females of the Arctic char Salvelinus alpinus complex from Lake Bolshoe Leprindo and a male of the dwarf form from Lake Tokko.

Жүктеу (285KB)
11. Fig. 10. Changes in the average index of the skeletal differentiation degree (30 traits) of juvenile reciprocal hybrids of dwarf forms of the Arctic char Salvelinus alpinus complex depending on age (a) and body length according to Smith (FL) (b): (○, —) – hybrids of females from Lake Tokko and males from Lake Bolshoe Leprindo (ToBL), (▲, - - -) – hybrids of females from Lake Bolshoe Leprindo and males from Lake Tokko (BLTo). Each point corresponds to the average value in samples of 2–65 individuals grouped by different age (a – 10 days) and size (b – 2 mm) intervals. The approximating curves are constructed using a second-degree polynomial.

Жүктеу (75KB)
12. Fig. 11. Gill arches of fry of reciprocal hybrids of dwarf forms of arctic char Salvelinus alpinus complex from lakes Tokko and Bolshoe Leprindo: a–c – ToBL, g–e – BLTo; length according to Smith (FL, mm) and number of ossified gill rakers: a – 53, 30; b – 63, 32; c – 79, 35; g – 53, 29; d – 63.5, 31; e – 76, 33. Here and in Figs. 12–15: for the designations of the names of reciprocal hybrids, see Fig. 10.

Жүктеу (207KB)
13. Fig. 12. Dynamics of changes in the number of gill rakers (a, b) and the index of the length of the largest gill raker (c, d) in the ontogenesis of juveniles of reciprocal hybrids of dwarf forms of arctic char Salvelinus alpinus complex from lakes Tokko and Bolshoe Leprindo in relation to age (a, c) and body length (b, d). For designations, see Fig. 10.

Жүктеу (155KB)
14. Fig. 13. Distribution of laboratory-reared juveniles of dwarf forms of Arctic char Salvelinus alpinus complex from lakes Tokko (kTo) (- · -) and Bolshoe Leprindo (kBL) (···) and their reciprocal hybrids ToBL (, ○) and BLTo (----, ▲) in the space of the first two principal components (PC1, 2) (logarithms of 26 body measurements transformed according to the allometry equation). The position of individual specimens is given only for hybrids. Cluster centroids are shown: (×) – kTo, (+) – kBL, (○) – ToBL, (▲) – BLTo.

Жүктеу (72KB)
15. Fig. 14. Lifetime coloration of three-year-old individuals of reciprocal hybrids of dwarf forms of arctic char Salvelinus alpinus complex from lakes Tokko and Bolshoe Leprindo: a – ToBL, b – BLTo.

Жүктеу (262KB)
16. Fig. 15. The degree of yolk consumption at the beginning of the period of laying the axial skeleton (vertebral bodies) in reciprocal hybrids of dwarf forms of arctic char Salvelinus alpinus complex from lakes Tokko and Bolshoe Leprindo: a – ToBL, b – BLTo.

Жүктеу (327KB)

© Russian Academy of Sciences, 2024